Skip to main content
Log in

Surface Plasmon Resonant THz Wave Transmission on Carbon Nanotube Film

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The properties of the terahertz resonant surface plasmons wave on the carbon nanotube film and dielectric interface have been investigated. As a first step towards engineering terahertz SPPs-like surface modes, we present a computer experiment to demonstrate that the carbon nanotube film surface can also be employed to concentrate and guide the terahertz SPPs wave. The carbon nanotube film is modeled in an experimentally realizable geometry. It is shown that a unique electromagnetic surface mode in terahertz region can be supported along the carbon nanotube film/dielectric interface when the free-space broadband terahertz pulse is incident on the carbon nanotube film with subwavelength gratings. Comparing with noble metals, plasmonic nano-structure materials based on carbon nanotube film offer a potentially more versatile approach to engineering tightly confined surface modes in the THz regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Williams CR, Andrews SR, Maier SA, Fernandez-Dominguez AI, Martin-Moreno L, Garcia-Vidal FJ (2008) Highly confined guiding of THz surface plasmon polaritons on structured metal surfaces. Nat Photon 2:175–179

    Article  CAS  Google Scholar 

  2. Stefan A (2007) Plasmonics: fundamentals and applications. Springer, Berlin

    Google Scholar 

  3. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  4. Baumberg JJ, Kelf TA, Sugawara Y, Cintra S, Abdelsalam ME, Bartlett PN, Russell AE (2005) Angle-resolved surface-enhanced Raman scattering on metallic nanostructure plasmonic crystals. Nano Lett 5:2262–2267

    Article  CAS  Google Scholar 

  5. Tomasz JA, Piotr W, Tomasz S (2011) Performance of scanning near-field optical microscope probes with single groove and various metal coatings. Plasmonics 6:11–18

    Article  Google Scholar 

  6. Li ZB, Zhou WY, Yan WG, Tian JG (2011) Near-field enhancement through a single subwavelength aperture with gaps inside. Plasmonic 6:149–154

    Article  Google Scholar 

  7. Liu ZW, Wei QH, Zhang X (2005) Surface plasmon interference nanolithography. Nano Lett 5:957–961

    Article  CAS  Google Scholar 

  8. Srituravanich W, Fang N, Sun C, Luo Q, Zhang XP (2004) Plasmonic nanolithography. Nano Lett 4:1085–1088

    Article  CAS  Google Scholar 

  9. Tsai WH, Tsao YC, Lin HY, Sheu BC (2005) Cross-point analysis for a multimode fiber sensor based on surface plasmon resonance. Opt Lett 30:2209–2211

    Article  Google Scholar 

  10. Fu YQ, Zhou XL (2010) Plasmonic lenses: a review. Plasmonics 5:287–310

    Article  CAS  Google Scholar 

  11. Azad AK, Zhao YG, Zhang WL, He MX (2006) Effect of dielectric properties of metals on THz transmission in subwavelength hole arrays. Opt Lett 31:2637–2639

    Article  CAS  Google Scholar 

  12. Huang CP, Zhu YY (2007) Plasmonics: manipulating light at the subwavelength scale. Active and Passive Electronic Components ID30946

  13. Saxler J, Gomez Rivas J, Janke C, Pellemans HPM, HaringBolivar P, Kurz H (2004) Time-domain measurements of surface plasmon polaritons in the THz frequency range. Phys Rev B 69:155427

    Article  Google Scholar 

  14. O’Hara J, Averitt R, Taylor A (2005) Prism coupling to THz surface plasmon polaritons. Opt Express 13:6117–6126

    Article  Google Scholar 

  15. Coleman S, Grischkowsky D (2003) A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics. Appl Phys Lett 83:3656–3658

    Article  CAS  Google Scholar 

  16. Jeon TI, Son JH, An KH, Lee YH, Lee YS (2005) THz absorption and dispersion of fluorine-doped single-walled CNT. J Appl Phys 98:034316

    Article  Google Scholar 

  17. Jeon TI, Kim KJ, Kang C, Oh SJ, Son JH, An KH, Bae DJ, Lee YH (2002) THz conductivity of anisotropic singe walled carbon nanotube films. Appl Phys Lett 80:3403–3404

    Article  CAS  Google Scholar 

  18. Ugawa A, Rinzler AG, Tanner DB (1999) Far-infrared gaps in single-wall carbon nanotubes. Phys Rev B 60:R11305

    Article  CAS  Google Scholar 

  19. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW, Ward CA (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 22:1099–1120

    Article  CAS  Google Scholar 

  20. Dong XQ, Grischkowsky D, Zhang WL (2004) THz transmission properties of thin, subwavelength metallic hole arrays. Opt Lett 29:896–898

    Article  Google Scholar 

  21. www.srpcb.com/bbs/download.php?no=52&name=metcladcompchart

  22. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nat Photon 424:824–830

    CAS  Google Scholar 

  23. Raether H (1988) Surface plasmons on smooth and rough surfaces and on grating. Springer, Berlin

    Google Scholar 

Download references

Acknowledgment

The work is partly supported by the National Natural Science Foundation of China (60871073 and 51005001), the Research Foundation of Education Bureau of Heilongjiang Province (11551098), and Youth Foundation of Harbin University of Science and Technology (2009YF024 and 2009YF025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, X., Wu, Q. et al. Surface Plasmon Resonant THz Wave Transmission on Carbon Nanotube Film. Plasmonics 7, 411–415 (2012). https://doi.org/10.1007/s11468-011-9322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9322-4

Keywords

Navigation