Skip to main content
Log in

Polarization and Filter Properties Investigation of Metal Gratings and Rings

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We demonstrated the near-field optical transmission properties of nanogratings with spoke and rings structures through a near-field scanning optical microscope, and the far-field optical transmission properties with different polarization angles are investigated with an optical microscope. Our experimental results verified the polarization properties of the nanograting structures and further demonstrated the experimental results are supported by the finite difference time domain theoretical simulation. The optical microscope imaging of the spoke and ring structures also show that the grating structures can disperse visible light of different wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yun BF, Hu GH, Cui YP (2011) A nanometric plasmonic waveguide filter based on Fabry–Perot resonator. Opt Commun 284(1):485–489

    Google Scholar 

  2. Vahala KJ (2003) Optical microcavities. Nature 424:839–846

    Article  CAS  Google Scholar 

  3. Xu T, Wu YK, Luo X, Guo LJ (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun. doi:10.1038/ncomms1058

  4. Chang ASP, Morton KJ, Tan H, Murphy PF, Wu W, Chou SY (2007) Tunable liquid crystal-resonant grating filter fabricated by nanoimprint lithography. IEEE Photon Technol Lett 19(19):1457–1459

    Google Scholar 

  5. Chen Q, Cumming DRS (2010) High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt Express 18(3):14056–14062

    Google Scholar 

  6. Ma J, Liu S, Zhang D, Yao J, Xu C, Shao J, Jin Y, Fan Z (2008) Guided-mode resonant grating filter with an antireflective surface for the multiple channels. J Opt A Pure Appl 10:025302

    Article  Google Scholar 

  7. Changkui HU, Deming LIU (2009) Polarization characteristics of subwavelength aluminum wire grating in near infrared. Front Optoelectron China 2(2):187–191

    Article  Google Scholar 

  8. Priambodo PS, Maldonado TA (2003) Fabrication and characterization of high-quality waveguide-mode resonant optical filters. Appl Phys Lett 83(16):3248–3250

    Article  CAS  Google Scholar 

  9. Kobayashi T, Kanamori Y, Hane K (2005) Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure. Appl Phys Lett 87:151106-1–151106-2

    Google Scholar 

  10. Yoon YT, Lee HS, Lee SS, Kim SH, Park JD, Lee KD (2008) Color filter incorporating a subwavelength patterned grating in poly silicon. Opt Express 16(4):2374–2380

    Google Scholar 

  11. Suh W, Fan S (2004) All-pass transmission or flattop reflection filters using a single photonic crystal slab. Appl Phys Lett 84(24):4905–4907

    Article  CAS  Google Scholar 

  12. Magnusson R and Shokooh-Saremi M (2007) Widely-tunable nanostructured leaky-mode resonant pixels for the visible spectral region. OSA/CLEO

  13. Wang Z, Sang T, Wang L, Zhu J, Wu Y, Chen L (2006) Guided-mode resonance Brewster filters with multiple channels. Appl Phys Lett 88:251115-1–251115-3

    Google Scholar 

  14. Park HJ, Xu T, Lee JY, Ledbetter A, and Jay Guo L (2011) Photonic color filters integrated with organic solar cells for energy harvesting. ACS Nano, Article ASAP. doi:10.1021/nn201767e

  15. Kaplan AF, Xu T, Wu YK, Guo LJ (2010) Multilayer pattern transfer for plasmonic color filter applications. J Vac Sci Technol B 28:C6O60–C6O63

    Google Scholar 

  16. Gruev V, Ortu A, Lazarus N, Spiegel JVD, Engheta N (2007) Fabrication of a dual-tier thin film micro polarization array. Opt Express 15:4994–5007

    Google Scholar 

  17. Zhou Y, Klotzkin DJ (2008) Design and parallel fabrication of wire-grid polarization arrays for polarization-resolved imaging at 1.55 μm. App Optics 47(20):3555–3560

    Article  Google Scholar 

  18. Gruev V and Perkins R (2010) A 1 MPixel CCD image sensor with aluminum nanowire polarization filter. IEEE 978-1-4244-5309-2/10, 629–632

  19. Zhang X, Liu H, Tian J, Song Y, Wang L, Song J, Zhang G (2008) Optical polarizers based on gold nanowires fabricated using colloidal gold nanoparticles. Nanotechnology 19:285202

    Article  Google Scholar 

  20. MultView (2000) User Guide from Nanonics Imaging Ltd. Support contact. http://www.nanonics.co.il/multiview-2000.html

  21. Yongqi Fu Yu, Liu XZ, Zongwei Xu, Fang F (2010) Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits. Opt Express 18(4):3438–3443

    Article  Google Scholar 

  22. FDTD Solution from Lumerical Solutions Inc. http://www.lumerical.com

  23. Feng L, Mizrahi A, Zamek S, Liu Z, Lomakin V, Fainman Y (2011) Metal materials for enhanced polarization conversion in plasmonic excitation. ACS Nano 5(6):5100–5106

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by “the Fundamental Research Funds for the Central Universities,” under Grant No. ZYGX2010J053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, R., Wu, YK. & Zhou, X. Polarization and Filter Properties Investigation of Metal Gratings and Rings. Plasmonics 7, 389–396 (2012). https://doi.org/10.1007/s11468-011-9320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9320-6

Keywords

Navigation