Skip to main content
Log in

Plasmonic, Low-Frequency Raman, and Nonlinear Optical-Limiting Studies in Copper–Silica Nanocomposites

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Nanocomposite thin films consisting of Cu nanoparticles embedded in silica matrix were synthesized by atom beam co-sputtering technique. Plasmonic, optical, and structural properties of the nanocomposite films were investigated by using ultraviolet (UV)–visible absorption spectroscopy, nonlinear optical transmission, X-ray diffraction (XRD), and low-frequency Raman scattering. UV–visible absorption studies revealed the surface plasmon resonance absorption at 564 nm which showed a red shift with increase in Cu fraction. XRD results together with surface plasmon resonance absorption confirmed the presence of Cu nanoparticles of different size. Low-frequency Raman studies of nanocomposite films revealed breathing modes in Cu nanoparticles. Nanocomposites with lower metal fractions were found to behave like optical limiters. The possibility of controllably tuning the optical nonlinearity of these nanocomposites could enable them to be the potential candidates for applications in nanophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kano H, Kawata S (1996) Two-photon-excited fluorescence enhanced by a surface plasmon. Opt Lett 21:1848

    Article  CAS  Google Scholar 

  2. Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302

    Article  CAS  Google Scholar 

  3. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102

    Article  CAS  Google Scholar 

  4. Bhawalkar D, Kumar ND, Zhao CF, Prasad PN (1997) Two-photon photodynamic therapy. J Clin Laser Med Surg 15:201

    CAS  Google Scholar 

  5. Sanchez EJ, Novotny L, Xie XS (1999) Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys Rev Lett 82:4014

    Article  CAS  Google Scholar 

  6. Gryczynski I, Malicka J, Shen Y, Gryczynski Z, Lakowicz JR (2002) Excited-state lifetime assay for protein detection on gold colloids-fluorophore complexes. J Phys Chem B 106:2191

    Article  CAS  Google Scholar 

  7. Stellacci F, Bauer CA, Friedrichsen TM, Wenseleers W, Marder SR, Perry JW (2005) Ultrabright supramolecular beacons based on self-assembly of two-photon chromophores on metal nanoparticles. J Am Chem Soc 125:328

    Article  Google Scholar 

  8. Cohanoschi I, Hernández FE (2005) Surface plasmon enhancement of two- and three-photon absorption of Hoechst 33258 dye in activated gold colloid solution. J Phys Chem B 109:14506

    Article  CAS  Google Scholar 

  9. Kreibig U, Volmer M (1995) Optical properties of metal clusters: Springer series in materials science. Springer, Berlin, Vol.25

    Google Scholar 

  10. Schwartzberg AM, Zhang JZ (2008) Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C 112:10323

    Article  CAS  Google Scholar 

  11. Garcia-Vidal FJ, Pendry J (1996) Collective theory for surface enhanced Raman scattering. Phys Rev Lett 77:1163

    Article  CAS  Google Scholar 

  12. Sarychev AK, Shalaev VM (2002) Theory of nonlinear optical responses in metal–dielectric composites. Top Appl Phys 82:169

    Article  CAS  Google Scholar 

  13. Haes AJ, Zou SL, Schatz GC, Van Duyne RP (2004) Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108:6961

    Article  CAS  Google Scholar 

  14. Boni LD, Wood E, Toro C, Hernandez F (2008) Optical saturable absorption in gold nanoparticles. Plasmonics 3:171

    Article  Google Scholar 

  15. Homola J, Yee S, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54:3

    Article  Google Scholar 

  16. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078

    Article  CAS  Google Scholar 

  17. Mishra YK, Mohapatra S, Avasthi DK, Kabiraj D, Lalla NP, Pivin JC, Sharma H, Kar R, Singh N (2007) Gold–silica nanocomposites for the detection of human ovarian cancer cells: a preliminary study. Nanotechnology 18:345606

    Article  Google Scholar 

  18. Haes AJ, Van Duyne RP (2004) A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 379:920

    Article  CAS  Google Scholar 

  19. Xu HX, Kall M (2002) Surface-plasmon-enhanced optical forces in silver nanoaggregates. Phys Rev Lett 89:246802

    Article  Google Scholar 

  20. Shao DB, Chen SC (2005) Surface-plasmon-assisted nanoscale photolithography by polarized light. Appl Phys Lett 86:253107

    Article  Google Scholar 

  21. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549

    Article  CAS  Google Scholar 

  22. Palpant B, Prevel B, Lerme J, Cottancin E, Pellarin M, Treilleux M, Perez A, Vialle JL, Broyer M (1998) Optical properties of gold clusters in the size range 2–4 nm. Phys Rev B 57:1963

    Article  CAS  Google Scholar 

  23. Wang J, Lau WM, Li Q (2005) Effects of particle size and spacing on the optical properties of gold nanocrystals in alumina. J Appl Phys 97:114303

    Article  Google Scholar 

  24. Miotello A, De Marchi G, Mattei G, Mazzoldi P, Sada C (2001) Clustering of gold atoms in ion-implanted silica after thermal annealing in different atmospheres. Phys Rev B 63:075409

    Article  Google Scholar 

  25. Takeda Y, Lu J, Plaksin OA, Amekura H, Kono K, Kishimoto N (2004) Optical properties of dense Cu nanoparticle composites fabricated by negative ion implantation. Nucl Instrum Meth Phys Res B 219–220:737

    Article  Google Scholar 

  26. Karthikeyan B, Anija M, Sandeep CSS, Nadeer TMM, Philip R (2008) Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature. Opt Commun 281:2933

    Article  CAS  Google Scholar 

  27. Schürmann U, Hartung WA, Takele H, Zaporojtchenko V, Faupel F (2005) Controlled syntheses of Ag–polytetrafluoroethylene nanocomposite thin films by co-sputtering from two magnetron sources. Nanotechnology 16:1078

    Article  Google Scholar 

  28. Mohapatra S, Mishra YK, Avasthi DK, Kabiraj D, Ghatak J, Varma S (2007) Synthesis of Au nanoparticles in partially oxidized Si matrix by atom beam sputtering. J Phys D: Appl Phys 40:7063

    Article  CAS  Google Scholar 

  29. Mohapatra S, Mishra YK, Kabiraj D, Avasthi DK, Ghatak J, Varma S (2008) Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance. Appl Phys Lett 92:103105

    Article  Google Scholar 

  30. Bahae MS, Said AA, Stryland EWV (1989) High-sensitivity, single-beam n2 measurements. Opt Lett 14:955

    Article  Google Scholar 

  31. Doolittle LR (1985) Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl Instrum Methods B 9:344–351

    Article  Google Scholar 

  32. Tamura A, Higeta K, Ichinokawa T (1982) Lattice vibrations and specific heat of a small particle. J Phys C 15:4975

    Article  CAS  Google Scholar 

  33. Montagna M, Dusi R (1995) Raman scattering from small spherical particles. Phys Rev B 52:10080

    Article  CAS  Google Scholar 

  34. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon, Oxford

    Google Scholar 

  35. Sutherland RL (1996) Handbook of nonlinear optics. Dekker, New York

    Google Scholar 

  36. Sandeep CSS, Philip R, Satheeshkumar R, Kumar V (2006) Sol-gel synthesis and nonlinear optical transmission in Zn(1−x)Mg(x)O (x ≤ 0.2) thin films. Appl Phys Lett 89:063102

    Article  Google Scholar 

  37. Ambika D, Kumar V, Sandeep CSS, Philip R (2009) Non-linear optical properties of (Pb1 − xSrx)TiO3 thin films. Appl Phys B 97:661

    Article  CAS  Google Scholar 

  38. Karthikeyan B, Anija M, Philip R (2006) In situ synthesis and nonlinear optical properties of Au:Ag nanocomposite polymer films. Appl Phys Lett 88:053104

    Article  Google Scholar 

  39. Irimpan L, Nampoori VPN, Radhakrishnan P (2008) Spectral and nonlinear optical characteristics of nanocomposites of ZnO–Ag. Chem Phys Lett 455:265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to S. R. Abhilash for his help during sample preparation. SM is grateful to Department of Science and Technology, New Delhi for providing financial support under SERC Fast Track Young Scientist project. The authors are grateful to Prof. H. Hofsäss for fruitful discussion and RBS measurements. YKM acknowledges the Alexander von Humboldt Foundation, Bonn, Germany for Humboldt Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyabrata Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohapatra, S., Mishra, Y.K., Warrier, A.M. et al. Plasmonic, Low-Frequency Raman, and Nonlinear Optical-Limiting Studies in Copper–Silica Nanocomposites. Plasmonics 7, 25–31 (2012). https://doi.org/10.1007/s11468-011-9271-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9271-y

Keywords

Navigation