Skip to main content
Log in

Numerical Design Methods of Nanostructure Array for Nanobiosensing

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Numerical methods are very important for designing nanodevices since localized surface plasmon resonance is sensitive to the geometric parameters. Especially, as for nano-biosensor, the proper choice of design tool is very critical in terms of the accuracy and simulation time. In this paper, we compare the discrete dipole approximation (DDA) with the finite integration technique (FIT) of the full-wave electromagnetic commercial software (CST Microwave Studio) in worldwide use with popularity. The refractive index sensitivity of rhombic hybrid Au–Ag nanostructures is calculated and compared in visible wavelength using DDA and FIT. Comparing the calculated results, the DDA has two advantages over the FIT: easy control of geometric parameter and less simulation time without compromising the accuracy. The limitations of the DDA will be deliberated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  1. Haynes CL, McFarland AD, Zhao L, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Käll M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107:7337–7342. doi:10.1021/jp034234r

    Article  CAS  Google Scholar 

  2. Haynes CL, Van Duyne RP (2003) Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography. Nano Lett 3:939–943. doi:10.1021/nl0342287

    Article  CAS  Google Scholar 

  3. Andersen PC, Rowlen KL (2002) Brilliant optical properties of nanometric noble metal spheres, rods, and aperture arrays. Appl Spectrosc 56:124A–135A, IDS Number: 558UT

    Article  CAS  Google Scholar 

  4. Fu Y, Zhou W, Lim LEN (2008) Near-field behavior of zone-plate-like plasmonic nanostructures. J Opt Soc Am A 25(1):238–249. doi:10.1364/JOSAA.25.000238

    Article  Google Scholar 

  5. Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108:109–116. doi:10.1021/jp0361327

    Article  CAS  Google Scholar 

  6. Zhu SL, Li F, Luo XG, Du CL, Fu YQ (2008) A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array. Sens Actuators B Chem 134:193–198. doi:10.1016/j.snb.2008.04.028

    Article  Google Scholar 

  7. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys (Leipz) 25:377–445. doi:10.1002/andp.19083300302

    Article  CAS  Google Scholar 

  8. Aden AL, Kerker M (1951) Scattering of electromagnetic waves from two concentric spheres. J App Phys 22:1242–1246. doi:10.1063/1.1699834

    Article  Google Scholar 

  9. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–1499. doi:10.1364/JOSAA.11.001491

    Article  Google Scholar 

  10. Skarlatos A, Schuhmann R, Weiland T (2005) Solution of radiation and scattering problems in complex environments using a hybrid finite integration technique—uniform theory of diffraction approach. IEEE Trans Antennas Propag 53(10):3347–3357. doi:10.1109/TAP.2005.856358

    Article  Google Scholar 

  11. Clemens M, Feigh S, Weiland T (2005) Construction principles of multigrid smoothers for Curl–Curl equations. IEEE Trans Magn 41(5):1680–1683. doi:10.1109/TMAG.2005.846086

    Article  Google Scholar 

  12. Weiland T (1977) A discretization model for the solution of Maxwell’s equations for six-component fields. Archiv fuer Elektronik und Uebertragungstechnik 31(3):116–120

    Google Scholar 

  13. Futamata M, Maruyama Y, Ishikawa M (2003) Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. J Phys Chem B 107:7607–7617. doi:10.1021/jp022399e

    Article  CAS  Google Scholar 

  14. Oubre C, Nordlander P (2004) Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J Phys Chem B 108:17740–17747. doi:10.1021/jp0473164

    Article  CAS  Google Scholar 

  15. Han JG, Ren WX, Huang Y (2009) A spline wavelet finite element formulation of thin plate bending. Eng Comput 25(4):319–326. doi:10.1007/s00366-009-0124-7

    Article  Google Scholar 

  16. Pisano AA, Sofi A, Fuschi P (2009) Finite element solutions for Eringen-type nonlocal elastic 2D problems. Int J Solids Struct 46(21):3836–3849. doi:10.1016/j.ijsolstr.2009.07.009

    Article  Google Scholar 

  17. Zhu SL, Zhou W (2009) Effect of gold-coating on the sensitivity of the rhombic silver nanostructures array. Plasmonics 4:303–306. doi:10.1007/s11468-009-9106-2

    Article  CAS  Google Scholar 

  18. Krietenstein B, Schuhmann R, Thoma P, Weiland T (1998) The perfect boundary approximation technique facing the challenge of high precision field computation. Proceedings of the XIX International Linear Accelerator Conference (LINAC’98), Chicago, USA, pp 860–862

  19. Weiland T (2003) RF & microwave simulators—from component to system design. Proceedings of the European Microwave Week (EUMW 2003), München, vol 2, October, pp 591–596. IDS Number: BY41G

  20. Zhu SL, Du CL, Fu YQ (2009) Tuning optical properties of rhombic hybrid Au–Ag nanoparticles: a discrete dipole approximation calculation. Journal of Computational and Theoretical Nanoscience 6:1034–1038. doi:10.1166/jctn.2009.1140

    Article  CAS  Google Scholar 

  21. Zhu SL, Zhou W (2010) Optical characters of rhombic hybrid Au–Ag nanostructures calculated by discrete dipole approximation method. Journal of Computational and Theoretical Nanoscience 7(3):634–637. doi:10.1166/jctn.2010.1406

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work was supported by the A*STAR (Agency for Science, Technology and Research), Singapore, under SERC grant no. 0721010023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoli Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S., Zhou, W., Park, GH. et al. Numerical Design Methods of Nanostructure Array for Nanobiosensing. Plasmonics 5, 267–271 (2010). https://doi.org/10.1007/s11468-010-9137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-010-9137-8

Keywords

Navigation