Skip to main content
Log in

Classification of spin Hall effect in two-dimensional systems

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Physical properties such as the conductivity are usually classified according to the symmetry of the underlying system using Neumann’s principle, which gives an upper bound for the number of independent components of the corresponding property tensor. However, for a given Hamiltonian, this global approach usually can not give a definite answer on whether a physical effect such as spin Hall effect (SHE) exists or not. It is found that the parity and types of spin-orbit interactions (SOIs) are good indicators that can further reduce the number of independent components of the spin Hall conductivity for a specific system. In terms of the parity as well as various Rashba-like and Dresselhaus-like SOIs, we propose a local approach to classify SHE in two-dimensional (2D) two-band models, where sufficient conditions for identifying the existence or absence of SHE in all 2D magnetic point groups are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Y. Gao, Semiclassical dynamics and nonlinear charge current, Front. Phys. 14(3), 33404 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  3. K. von Klitzing, The quantized Hall effect, Rev. Mod. Phys. 58(3), 519 (1986)

    Article  ADS  Google Scholar 

  4. N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82(2), 1539 (2010)

    Article  ADS  Google Scholar 

  5. I. Sodemann and L. Fu, Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials, Phys. Rev. Lett. 115(21), 216806 (2015)

    Article  ADS  Google Scholar 

  6. T. Low, Y. Jiang, and F. Guinea, Topological currents in black phosphorus with broken inversion symmetry, Phys. Rev. B 92(23), 235447 (2015)

    Article  ADS  Google Scholar 

  7. Z. Z. Du, H. Z. Lu, and X. C. Xie, Nonlinear Hall effects, Nat. Rev. Phys. 3(11), 744 (2021)

    Article  Google Scholar 

  8. S. Lai, H. Liu, Z. Zhang, J. Zhao, X. Feng, N. Wang, C. Tang, Y. Liu, K. S. Novoselov, S. A. Yang, and W. Gao, Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor, Nat. Nanotechnol. 16(8), 869 (2021)

    Article  ADS  Google Scholar 

  9. M. Wei, B. Wang, Y. Yu, F. Xu, and J. Wang, Nonlinear Hall effect induced by internal Coulomb interaction and phase relaxation process in a four-terminal system with time-reversal symmetry, Phys. Rev. B 105(11), 115411 (2022)

    Article  ADS  Google Scholar 

  10. M. Wei, L. Xiang, L. Wang, F. Xu, and J. Wang, Quantum third-order nonlinear Hall effect of a four-terminal device with time-reversal symmetry, Phys. Rev. B 106(3), 035307 (2022)

    Article  ADS  Google Scholar 

  11. C. P. Zhang, X. J. Gao, Y. M. Xie, H. C. Po, and K. T. Law, Higher-order nonlinear anomalous Hall effects induced by Berry curvature multipoles, Phys. Rev. B 107(11), 115142 (2023)

    Article  ADS  Google Scholar 

  12. C. Wang, Y. Gao, and D. Xiao, Intrinsic nonlinear Hall effect in antiferromagnetic tetragonal CuMnAs, Phys. Rev. Lett. 127(27), 277201 (2021)

    Article  ADS  Google Scholar 

  13. H. Y. Liu, J. Z. Zhao, Y. X. Huang, W. K. Wu, X. L. Sheng, C. Xiao, and S. Y. A. Yang, Intrinsic second-order anomalous Hall effect and its application in compensated antiferromagnets, Phys. Rev. Lett. 127(27), 277202 (2021)

    Article  Google Scholar 

  14. A. Gao, Y. F. Liu, J. X. Qiu, B. Ghosh, T. V. Trevisan, Y. Onishi, C. Hu, T. Qian, H. J. Tien, S. W. Chen, M. Huang, D. Bérubé, H. Li, C. Tzschaschel, T. Dinh, Z. Sun, S. C. Ho, S. W. Lien, B. Singh, K. Watanabe, T. Taniguchi, D. C. Bell, H. Lin, T. R. Chang, C. R. Du, A. Bansil, L. Fu, N. Ni, P. P. Orth, Q. Ma, and S. Y. Xu, Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure, Science 381(6654), 181 (2023)

    Article  ADS  Google Scholar 

  15. L. Xiang, C. Zhang, L. Wang, and J. Wang, Third-order intrinsic anomalous Hall effect with generalized semiclassical theory, Phys. Rev. B 107(7), 075411 (2023)

    Article  ADS  Google Scholar 

  16. M. Wei, L. Wang, B. Wang, L. Xiang, F. Xu, B. Wang, and J. Wang, Quantum fluctuation of the quantum geometric tensor and its manifestation as intrinsic Hall signatures in time-reversal invariant systems, Phys. Rev. Lett. 130(3), 036202 (2023)

    Article  ADS  Google Scholar 

  17. L. Shi and H. Z. Lu, Quantum transport in topological semimetals under magnetic fields (III), Front. Phys. 18(2), 21307 (2023)

    Article  ADS  Google Scholar 

  18. L. B. Altshuler, Fluctuations in the extrinsic conductivity of disordered conductors, JETP Lett. 41, 648 (1985)

    ADS  Google Scholar 

  19. P. A. Lee and A. D. Stone, Universal conductance fluctuations in metals, Phys. Rev. Lett. 55(15), 1622 (1985)

    Article  ADS  Google Scholar 

  20. P. A. Lee, A. D. Stone, and H. Fukuyama, Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field, Phys. Rev. B 35(3), 1039 (1987)

    Article  ADS  Google Scholar 

  21. C. W. J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys. 69(3), 731 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  22. Y. L. Han and Z. H. Qiao, Universal conductance fluctuations in Sierpinski carpets, Front. Phys. 14(6), 63603 (2019)

    Article  ADS  Google Scholar 

  23. S. Ryu, A. Schnyder, A. Furusaki, and A. Ludwig, Topological insulators and superconductors: Tenfold way and dimensional hierarchy, New J. Phys. 12(6), 065010 (2010)

    Article  ADS  Google Scholar 

  24. C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)

    Article  ADS  Google Scholar 

  25. R. C. Xiao, Y. J. Jin, and H. Jiang, Spin photovoltaic effect in antiferromagnetic materials: Mechanisms, symmetry constraints, and recent progress, APL Mater. 11(7), 070903 (2023)

    Article  ADS  Google Scholar 

  26. X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)

    Article  ADS  Google Scholar 

  27. B. A. Bernevig, Topological Insulators and Topological Superconductors, Princeton University Press, New Jersey, 2013

    Book  MATH  Google Scholar 

  28. J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87(4), 1213 (2015)

    Article  ADS  Google Scholar 

  29. J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Universal intrinsic spin Hall effect, Phys. Rev. Lett. 92(12), 126603 (2004)

    Article  ADS  Google Scholar 

  30. Y. Yang, Z. Xu, L. Sheng, B. Wang, D. Y. Xing, and D. N. Sheng, Time-reversal-symmetry-broken quantum spin Hall effect, Phys. Rev. Lett. 107(6), 066602 (2011)

    Article  ADS  Google Scholar 

  31. Y. Sun, Y. Zhang, C. Felser, and B. Yan, Strong intrinsic spin Hall effect in the TaAs family of Weyl semimetals, Phys. Rev. Lett. 117(14), 146403 (2016)

    Article  ADS  Google Scholar 

  32. H. J. Zhao, H. Nakamura, R. Arras, C. Paillard, P. Chen, J. Gosteau, X. Li, Y. R. Yang, and L. Bellaiche, Purely cubic spin splittings with persistent spin textures, Phys. Rev. Lett. 125(21), 216405 (2020)

    Article  ADS  Google Scholar 

  33. I. A. Nechaev and E. E. Krasovskii, Spin polarization by first-principles relativistic k · p theory: Application to the surface alloys PbAg2 and BiAg2, Phys. Rev. B 100(11), 115432 (2019)

    Article  ADS  Google Scholar 

  34. P. Höpfner, J. Schafer, A. Fleszar, J. H. Dil, B. Slomski, F. Meier, C. Loho, C. Blumenstein, L. Patthey, W. Hanke, and R. Claessen, Three-dimensional spin rotations at the Fermi surface of a strongly spin–orbit coupled surface system, Phys. Rev. Lett. 108(18), 186801 (2012)

    Article  ADS  Google Scholar 

  35. J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87(4), 1213 (2015)

    Article  ADS  Google Scholar 

  36. J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system, Phys. Rev. Lett. 94(4), 047204 (2005)

    Article  ADS  Google Scholar 

  37. E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect, Appl. Phys. Lett. 88(18), 182509 (2006)

    Article  ADS  Google Scholar 

  38. J. Schliemann and D. Loss, Spin-Hall transport of heavy holes in III–V semiconductor quantum wells, Phys. Rev. B 71(8), 085308 (2005)

    Article  ADS  Google Scholar 

  39. C. M. Acosta and A. Fazzio, Spin-polarization control driven by a Rashba-type effect breaking the mirror symmetry in two-dimensional dual topological insulators, Phys. Rev. Lett. 122(3), 036401 (2019)

    Article  ADS  Google Scholar 

  40. S. D. Stolwijk, K. Sakamoto, A. B. Schmidt, P. Kruger, and M. Donath, Spin texture with a twist in momentum space for Tl/Si(111), Phys. Rev. B 91(24), 245420 (2015)

    Article  ADS  Google Scholar 

  41. L. Fu, Hexagonal warping effects in the surface states of the topological insulator Bi2Te3, Phys. Rev. Lett. 103(26), 266801 (2009)

    Article  ADS  Google Scholar 

  42. S. Vajna, E. Simon, A. Szilva, K. Palotas, B. Ujfalussy, and L. Szunyogh, Higher-order contributions to the Rashba-Bychkov effect with application to the Bi/Ag(111) surface alloy, Phys. Rev. B 85(7), 075404 (2012)

    Article  ADS  Google Scholar 

  43. M. Michiardi, M. Bianchi, M. Dendzik, J. A. Miwa, M. Hoesch, T. K. Kim, P. Matzen, J. L. Mi, M. Bremholm, B. B. Iversen, and P. Hofmann, Strongly anisotropic spin–orbit splitting in a two-dimensional electron gas, Phys. Rev. B 91(3), 035445 (2015)

    Article  ADS  Google Scholar 

  44. S. Bandyopadhyay, A. Paul, and I. Dasgupta, Origin of Rashba–Dresselhaus effect in the ferroelectric nitride perovskite LaWN3, Phys. Rev. B 101(1), 014109 (2020)

    Article  ADS  Google Scholar 

  45. M. S. Bahramy, B. J. Yang, R. Arita, and N. Nagaosa, Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure, Nat. Commun. 3(1), 679 (2012)

    Article  ADS  Google Scholar 

  46. R. Moriya, K. Sawano, Y. Hoshi, S. Masubuchi, Y. Shiraki, A. Wild, C. Neumann, G. Abstreiter, D. Bougeard, T. Koga, and T. Machida, Cubic Rashba spin–orbit interaction of a two-dimensional hole gas in a strained-Ge/SiGe quantum well, Phys. Rev. Lett. 113(8), 086601 (2014)

    Article  ADS  Google Scholar 

  47. L. G. Gerchikov and A. V. Subashiev, Spin splitting of size-quantization subbands in asymmetric heterostructures, Sov. Phys. Semicond. 26, 73 (1992)

    Google Scholar 

  48. O. Bleibaum and S. Wachsmuth, Spin Hall effect in semiconductor heterostructures with cubic Rashba spin–orbit interaction, Phys. Rev. B 74(19), 195330 (2006)

    Article  ADS  Google Scholar 

  49. K. V. Shanavas, Theoretical study of the cubic Rashba effect at the SrTiO3 (001) surfaces, Phys. Rev. B 93(4), 045108 (2016)

    Article  ADS  Google Scholar 

  50. R. Arras, J. Gosteau, H. J. Zhao, C. Paillard, Y. Yang, and L. Bellaiche, Rashba-like spin–orbit and strain effects in tetragonal PbTiO3, Phys. Rev. B 100(17), 174415 (2019)

    Article  ADS  Google Scholar 

  51. L. G. D. da Silveira, P. Barone, and S. Picozzi, Rashba–Dresselhaus spin-splitting in the bulk ferroelectric oxide BiAlO3, Phys. Rev. B 93(24), 245159 (2016)

    Article  ADS  Google Scholar 

  52. D. C. Marinescu, Cubic Dresselhaus interaction parameter from quantum corrections to the conductivity in the presence of an in-plane magnetic field, Phys. Rev. B 96(11), 115109 (2017)

    Article  ADS  Google Scholar 

  53. M. Glazov and A. Kavokin, Spin Hall effect for electrons and excitons, J. Lumin. 125(1–2), 118 (2007)

    Article  Google Scholar 

  54. M. Seemann, D. Kodderitzsch, S. Wimmer, and H. Ebert, Symmetry-imposed shape of linear response tensors, Phys. Rev. B 92(15), 155138 (2015)

    Article  ADS  Google Scholar 

  55. S. V. Gallego, J. Etxebarria, L. Elcoro, E. S. Tasci, and J. M. Perez-Mato, Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: A new tool of the Bilbao crystallographic server, Acta Crystallogr. A Found. Adv. 75(3), 438 (2019)

    Article  MathSciNet  Google Scholar 

  56. Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)

    Article  ADS  Google Scholar 

  57. G. Orso, Anderson transition of cold atoms with synthetic spin–orbit coupling in two-dimensional speckle potentials, Phys. Rev. Lett. 118(10), 105301 (2017)

    Article  ADS  Google Scholar 

  58. H. Zhai, Spin–orbit coupled quantum gases, Int. J. Mod. Phys. B 26(1), 1230001 (2012)

    Article  ADS  MATH  Google Scholar 

  59. H. Yuan, M. S. Bahramy, K. Morimoto, S. Wu, K. Nomura, B. J. Yang, H. Shimotani, R. Suzuki, M. Toh, C. Kloc, X. Xu, R. Arita, N. Nagaosa, and Y. Iwasa, Zeeman-type spin splitting controlled by an electric field, Nat. Phys. 9(9), 563 (2013)

    Article  Google Scholar 

  60. The suppression of linear Rashba SOI was discussed in Ref. [49]. A transition from the cubic Rashba effect to the coexistence of linear and cubic Rashba effects was observed experimentally in oxide heterostructures [61]. For heavy holes in III–V semiconductor quantum wells, the linear Rashba SOI can be absent making the cubic SOI as the leading order [38, 62, 63].

  61. W. Lin, L. Li, F. Dŏgan, C. Li, H. Rotella, X. Yu, B. Zhang, Y. Li, W. S. Lew, S. Wang, W. Prellier, S. J. Pennycook, J. Chen, Z. Zhong, A. Manchon, and T. Wu, Interface-based tuning of Rashba spin–orbit interaction in asymmetric oxide heterostructures with 3d electrons, Nat. Commun. 10(1), 3052 (2019)

    Article  ADS  Google Scholar 

  62. R. Winkler, H. Noh, E. Tutuc, and M. Shayegan, Anomalous Rashba spin splitting in two-dimensional hole systems, Phys. Rev. B 65(15), 155303 (2002)

    Article  ADS  Google Scholar 

  63. K. Nomura, J. Wunderlich, J. Sinova, B. Kaestner, A. H. Mac-Donald, and T. Jungwirth, Edge-spin accumulation in semiconductor two-dimensional hole gases, Phys. Rev. B 72(24), 245330 (2005)

    Article  ADS  Google Scholar 

  64. Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Observation of the spin Hall effect in semiconductors, Science 306(5703), 1910 (2004)

    Article  ADS  Google Scholar 

  65. S. Basak, H. Lin, L. A. Wray, S. Y. Xu, L. Fu, M. Z. Hasan, and A. Bansil, Spin texture on the warped Diraccone surface states in topological insulators, Phys. Rev. B 84, 121401(R) (2011)

    Article  ADS  Google Scholar 

  66. D. L. Campbell, G. Juzeliunas, and I. B. Spielman, Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms, Phys. Rev. A 84(2), 025602 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (Grant Nos. 12034014, 12174262, and 12004442). L. Wang also thanks the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515130007) and the Shenzhen Natural Science Fund (the Stable Support Plan Program 20220810130956001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luyang Wang or Jian Wang.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, L., Xu, F., Wang, L. et al. Classification of spin Hall effect in two-dimensional systems. Front. Phys. 19, 33205 (2024). https://doi.org/10.1007/s11467-023-1358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1358-3

Keywords

Navigation