Skip to main content
Log in

A high-speed true random number generator based on Ag/SiNx/n-Si memristor

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The intrinsic variability of memristor switching behavior can be used as a natural source of randomness, this variability is valuable for safe applications in hardware, such as the true random number generator (TRNG). However, the speed of TRNG is still be further improved. Here, we propose a reliable Ag/SiNx/n-Si volatile memristor, which exhibits a typical threshold switching device with stable repeat ability and fast switching speed. This volatile-memristor-based TRNG is combined with nonlinear feedback shift register (NFSR) to form a new type of high-speed dual output TRNG. Interestingly, the bit generation rate reaches a high speed of 112 kb/s. In addition, this new TRNG passed all 15 National Institute of Standards and Technology (NIST) randomness tests without post-processing steps, proving its performance as a hardware security application. This work shows that the SiNx-based volatile memristor can realize TRNG and has great potential in hardware network security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Weber and R. Weber, Internet of Things, Springer, 2010

  2. V. d. Leest, R. Maes, G. J. Schrijen, and P. Tuyls, in: ISSE 2014 Securing Electronic Business Processes, Springer, 2014, pp 188–198

  3. C. Stergiou, K. E. Psannis, B. G. Kim, and B. Gupta, Secure integration of IoT and cloud computing, Future Gener. Comput. Syst. 78, 964 (2018)

    Article  Google Scholar 

  4. M. D. Pickett and R. Stanly Williams, Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices, Nanotechnology 23(21), 215202 (2012)

    Article  ADS  Google Scholar 

  5. M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K. Yoo, and K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5–x/TaO2–x bilayer structures, Nat. Mater. 10(8), 625 (2011)

    Article  ADS  Google Scholar 

  6. A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, Sub-nanosecond switching of a tantalum oxide memristor, Nanotechnology 22(48), 485203 (2011)

    Article  Google Scholar 

  7. S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, TEAM: Threshold adaptive memristor model, IEEE Trans. Circuits Syst. I Regul. Pap. 60(1), 211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Q. Xia, W. Robinett, M. W. Cumbie, N. Banerjee, T. J. Cardinali, J. J. Yang, W. Wu, X. Li, W. M. Tong, D. B. Strukov, G. S. Snider, G. Medeiros-Ribeiro, and R. S. Williams, Memristor–CMOS hybrid integrated circuits for reconfigurable logic, Nano Lett. 9(10), 3640 (2009)

    Article  ADS  Google Scholar 

  9. Z. K. Dong, D. L. Qi, Y. F. He, Z. Xu, X. F. Hu, and S. K. Duan, Easily cascaded memristor-CMOS hybrid circuit for high-efficiency boolean logic implementation, Int. J. Bifurcat. Chaos 28(12), 1850149 (2018)

    Article  Google Scholar 

  10. T. Zhang, M. Yin, C. Xu, X. Lu, X. Sun, Y. Yang, and R. Huang, High-speed true random number generation based on paired memristors for security electronics, Nanotechnology 28(45), 455202 (2017)

    Article  ADS  Google Scholar 

  11. H. Jiang, D. Belkin, S. E. Savel’ev, S. Lin, Z. Wang, Y. Li, S. Joshi, R. Midya, C. Li, M. Rao, M. Barnell, Q. Wu, J. J. Yang, and Q. Xia, A novel true random number generator based on a stochastic diffusive memristor, Nat. Commun. 8(1), 882 (2017)

    Article  ADS  Google Scholar 

  12. L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, S. D. Leigh, M. Levenson, M. Vangel, N. A. Heckert and D. L. Banks, A statistical test suite for random and pseudorandom number generators for cryptographic applications, National Institute of Standards & Technology, 2010

  13. S. Balatti, S. Ambrogio, R. Carboni, V. Milo, Z. Wang, A. Calderoni, N. Ramaswamy, and D. Ielmini, Physical unbiased generation of random numbers with coupled resistive switching devices, IEEE Trans. Electron Dev. 63(5), 2029 (2016)

    Article  ADS  Google Scholar 

  14. J. H. Yoon, Z. Wang, K. M. Kim, H. Wu, V. Ravichan-dran, Q. Xia, C. S. Hwang, and J. J. Yang, An artificial nociceptor based on a diffusive memristor, Nat. Commun. 9(1), 417 (2018)

    Article  ADS  Google Scholar 

  15. K. S. Woo, Y. M. Wang, J. Kim, Y. Kim, Y. J. Kwon, J. H. Yoon, W. Kim, and C. S. Hwang, A true random number generator using threshold-switching-based memristors in an efficient circuit design, Adv. Electron. Mater. 5(2), 1800543 (2019)

    Article  Google Scholar 

  16. G. Kim, J. H. In, Y. S. Kim, H. Rhee, W. Park, H. Song, J. Park, and K. M. Kim, Self-clocking fast and variation tolerant true random number generator based on a stochastic Mott memristor, Nat. Commun. 12(1), 2906 (2021)

    Article  ADS  Google Scholar 

  17. Y. F. Lu, H. Y. Li, Y. Li, L. H. Li, T. Q. Wan, L. Yang, W. B. Zuo, K. H. Xue, and X. S. Miao, A high-performance Ag/TiN/HfOx/HfOy/HfOx/Pt diffusive memristor for calibration-free true random number generator, Adv. Electron. Mater. 8(9), 2200202 (2022)

    Article  Google Scholar 

  18. H. He, Y. Pei, J. Wang, Z. Zhang, J. Liu, L. Yan, Y. Zhao, X. Li, Y. Wei, and J. Chen, A hamming weight calculation of binary string in one nMOS transistor–one Ag/HfO2/black phosphorus/Pt memristor, IEEE Trans. Electron Devices 69(9), 22008490 (2022)

    Article  Google Scholar 

  19. L. Yan, Y. F. Pei, J. J. Wang, H. He, Y. Zhao, X. Y. Li Y. X. Wei, and X. B. Yan, High-speed Si films based threshold switching device and its artificial neuron application, Appl. Phys. Lett. 119(15), 153507 (2021)

    Article  ADS  Google Scholar 

  20. Y. X. Zhang, Z. L. Fang, and X. B. Yan, HfO2-based memristor-CMOS hybrid implementation of artificial neuron model, Appl. Phys. Lett. 120(21), 213502 (2022)

    Article  ADS  Google Scholar 

  21. Z. R. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Y. Li, Q. Wu, M. Barnell, G. L. Li, H. L. Xin, R. S. Williams, Q. F. Xia, and J. J. Yang, Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing, Nat. Mater. 16(1), 101 (2017)

    Article  ADS  Google Scholar 

  22. X. Xu, E. J. Cho, L. Bekker, A. A. Talin, E. Lee, A. J. Pascall, M. A. Worsley, J. Zhou, C. C. Cook, J. D Kuntz, S. Cho, and C. A. Orme, A bioinspired artificial injury response system based on a robust polymer memristor to mimic a sense of pain, sign of injury, and healing, Adv. Sci. (Weinh.) 9(15), 2200629 (2022)

    Google Scholar 

  23. R. Midya, Z. Wang, J. Zhang, S. E. Savel’ev, C. Li, M Rao, M. H. Jang, S. Joshi, H. Jiang, P. Lin, K. Norris, N. Ge, Q. Wu, M. Barnell, Z. Li, H. L. Xin, R. S. Williams, Q. Xia, and J. J. Yang, Anatomy of Ag/Hafnia-based selectors with 1010 nonlinearity, Adv. Mater. 29(12), 1604457 (2017)

    Article  Google Scholar 

  24. X. Yan, H. Li, L. Zhang, C. Lu, J. Zhao, Z. Zhou, H Wang, J. Wang, X. Li, Y. Pei, C. Qin, G. Wang, Z Xiao, Q. Zhao, K. Wang, D. Ren, and S. Zheng, Density effects of graphene oxide quantum dots on characteristics of Zr0.5Hf0.5O2 film memristors, Appl. Phys. Lett. 114(16), 162906 (2019)

    Article  ADS  Google Scholar 

  25. Y. Wang, Q. Wang, J. Zhao, T. Niermann, Y. Liu, L. Dai, K. Zheng, Y. Sun, Y. Zhang, J. Schwarzkopf, T. Schroeder, Z. Jiang, W. Ren, and G. Niu, A robust high-performance electronic synapse based on epitaxial ferro-electric Hf0.5Zr0.5O2 films with uniform polarization and high Curie temperature, Appl. Mater. Today 29, 101587 (2022)

    Article  Google Scholar 

  26. D. Q. Liu, H. F. Cheng, G. Wang, X. Zhu, and N. N. Wang, Diode-like volatile resistive switching properties in amorphous Sr-doped LaMnO3 thin films under lower current compliance, J. Appl. Phys. 114(15), 154906 (2013)

    Article  ADS  Google Scholar 

  27. L. A. Liu, J. H. Zhao, G. Cao, S. K. Zheng, and X. B. Yan, A memristor-based silicon carbide for artificial nociceptor and neuromorphic computing, Adv. Mater. Technol. 6(12), 2100373 (2021)

    Article  Google Scholar 

  28. S. A. Chekol, S. Menzel, R. Waser, and S. Hoffmann-Eifert, Strategies to control the relaxation kinetics of Ag -based diffusive memristors and implications for device operation, Adv. Electron. Mater. 8(11), 2200549 (2022)

    Article  Google Scholar 

  29. Y. H. Chen, Y. Wang, Y. H. Luo, X. W. Liu, Y. Q. Wang, F. Gao, J. G. Xu, E. T. Hu, S. Samanta, X. Wan, X. J. Lian, J. Xiao, and Y. Tong, Realization of artificial neuron using MXene Bi-directional threshold switching memristors, IEEE Electron Device Lett. 40(10), 1686 (2019)

    Article  ADS  Google Scholar 

  30. O. Kwon, J. Shin, D. Chung, and S. Kim, Energy efficient short-term memory characteristics in Ag/SnOx/TiN RRAM for neuromorphic system, Ceram. Int. 48(20), 30482 (2022)

    Article  Google Scholar 

  31. O. Kwon, Y. Lee, M. Kang, and S. Kim, Synaptic plasticity features and neuromorphic system simulation in AlN-based memristor devices, J. Alloys Compd. 911, 164870 (2022)

    Article  Google Scholar 

  32. S. Saitoh and K. Kinoshita, Oxide-based selector with trap-filling-controlled threshold switching, Appl. Phys. Lett. 116(11), 112101 (2020)

    Article  ADS  Google Scholar 

  33. D. Dev, A. Krishnaprasad, M. S. Shawkat, Z. He, S. Das, D. Fan, H. S. Chung, Y. Jung, and T. Roy, 2D MoS2-based threshold switching memristor for artificial neuron, IEEE Electron Device Lett. 41(6), 936 (2020)

    Article  ADS  Google Scholar 

  34. W. Wang, W. Song, P. Yao, Y. Li, J. Van Nostrand, Q. Qiu, D. Ielmini, and J. J. Yang, Integration and Co-design of memristive devices and algorithms for artificial intelligence, iScience 23(12), 101809 (2020)

    Article  ADS  Google Scholar 

  35. S. Balatti, S. Ambrogio, Z. Q. Wang, and D. Ielmini, True random number generation by variability of resistive switching in oxide-based devices, IEEE J. Emerg. Sel. Top. Circuits Syst. 5(2), 214 (2015)

    Article  ADS  Google Scholar 

  36. B. Wei and C. Lu, Exploring device-circuit co-design in LC VCO circuits using monolayer transition metal dischalcogenide MoS2 field-effect transistors, AEU Int. J. Electron. Commun. 138, 153867 (2021)

    Article  Google Scholar 

  37. K. S. Woo, J. Kim, J. Han, J. M. Choi, W. Kim, and C. S. Hwang, A high-speed true random number generator based on a CuxTe1–x diffusive memristor, Adv. Intell. Syst. 3(7), 2100062 (2021)

    Article  Google Scholar 

  38. K. S. Woo, Y. Wang, Y. Kim, J. Kim, W. Kim, and C. S. Hwang, A combination of a volatile-memristor-based true random-number generator and a nonlinear-feedback shift register for high-speed encryption, Adv. Electron. Mater. 6(5), 1901117 (2020)

    Article  Google Scholar 

  39. Y. F. Lu, H. Y. Li, Y. Li, L. H. Li, T. Q. Wan, L. Yang, W. B. Zuo, K. H. Xue, and X. S. Miao, A high-performance Ag/TiN/HfOx/HfOy/HfOx/Pt diffusive memristor for calibration-free True Random Number Generator, Adv. Electron. Mater. 8(9), 2200202 (2022)

    Article  Google Scholar 

  40. S. W. Ke, L. Jiang, Y. F. Zhao, Y. Y. Xiao, B. Jiang, G. Cheng, F. C. Wu, G. S. Cao, Z. H. Peng, M. Zhu, and C. Ye, Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing, Front. Phys. 17(5), 53508 (2022)

    Article  ADS  Google Scholar 

  41. L. G. Gao, F. Alibart, and D. B. Strukov, Programmable CMOS/memristor threshold logic, IEEE Trans. NanoTechnol. 12(2), 115 (2013)

    Article  ADS  Google Scholar 

  42. R. R. Dube, Hardware-Based Computer Security Techniques to Defeat Hackers: From Biometrics to Quantum Cryptography, John Wiley & Sons, 2008

  43. K. Zeng, C. H. Yang, D. Y. Wei, and T. Rao, Pseudorandom bit generators in stream-cipher cryptography, Computer 24(2), 8 (1991)

    Article  Google Scholar 

  44. E. Dubrova, A transformation from the fibonacci to the galois NLFSRs, IEEE Trans. Inf. Theory 55(11), 5263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. W. H. Wang and G. D. Zhou, Moisture influence in emerging neuromorphic device, Front. Phys. 18(5), 53601 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Plan “Nano Frontier” Key Special Project (Grant No. 2021YFA1200502), Cultivation Projects of National Major R&D Project (Grant No. 92164109), the National Natural Science Foundation of China (Grant Nos. 61874158, 62004056, and 62104058), the Special Project of Strategic Leading Science and Technology of Chinese Academy of Sciences (Grant No. XDB44000000-7), Key R&D Plan Projects in Hebei Province (Grant No. 22311101D), Hebei Basic Research Special Key Project (Grant No. F2021201045), the Support Program for the Top Young Talents of Hebei Province (Grant No. 70280011807), the Supporting Plan for 100 Excellent Innovative Talents in Colleges and Universities of Hebei Province (Grant No. SLRC2019018), the Interdisciplinary Research Program of Natural Science of Hebei University (No. DXK202101), the Institute of Life Sciences and Green Development (No. 521100311), the Natural Science Foundation of Hebei Province (Nos. F2022201054 and F2021201022), the Outstanding Young Scientific Research and Innovation Team of Hebei University (Grant No. 605020521001), the Special Support Funds for National High Level Talents (Grant No. 041500120001), the Advanced Talents Incubation Program of the Hebei University (Grant Nos. 521000981426, 521100221071, and 521000981363), and the Science and Technology Project of Hebei Education Department (Grant Nos. QN2020178 and QN2021026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Yan.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Zhang, Z., Guan, Z. et al. A high-speed true random number generator based on Ag/SiNx/n-Si memristor. Front. Phys. 19, 13202 (2024). https://doi.org/10.1007/s11467-023-1331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1331-1

Keywords

Navigation