Skip to main content
Log in

Realization of highly isolated stable few-spin systems based on alkaline-earth fermions

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Few-level systems consisting of a certain number of spin states have provided the basis of a wide range of cold atom researches. However, more developments are still needed for better preparation of isolated few-spin systems. In this work, we demonstrate a highly nonlinear spin-discriminating (HNSD) method for isolating an arbitrary few-level manifold out of a larger total number of spin ground states in fermionic alkaline-earth atoms. With this method, we realize large and tunable energy shifts for unwanted spin states while inducing negligible shifts for the spin states of interest, which leads to a highly isolated few-spin system under minimal perturbation. Furthermore, the isolated few-spin system exhibits a long lifetime on the hundred-millisecond scale. Using the HNSD method, we demonstrate a characteristic Rabi oscillation between the two states of an isolated two-spin Fermi gas. Our method has wide applicability for realizing long-lived two-spin or high-spin quantum systems based on alkaline-earth fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, Rev. Mod. Phys. 87(2), 637 (2015)

    Article  ADS  Google Scholar 

  2. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)

    Article  ADS  Google Scholar 

  3. P. Naidon and S. Endo, Efimov physics: A review, Rep. Prog. Phys. 80(5), 056001 (2017)

    Article  ADS  Google Scholar 

  4. C. Monroe, W. C. Campbell, L. M. Duan, Z. X. Gong, A. V. Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M. Linke, G. Pagano, P. Richerme, C. Senko, and N. Y. Yao, Programmable quantum simulations of spin systems with trapped ions, Rev. Mod. Phys. 93(2), 025001 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  5. J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on Topological Insulators, Springer, 2016

  6. X. L. Qi, Y. S. Wu, and S. C. Zhang, Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors, Phys. Rev. B 74(8), 085308 (2006)

    Article  ADS  Google Scholar 

  7. X. J. Liu, K. T. Law, and T. K. Ng, Realization of 2D spin-orbit interaction and exotic topological orders in cold atoms, Phys. Rev. Lett. 112(8), 086401 (2014)

    Article  ADS  Google Scholar 

  8. L. Huang, Z. Meng, P. Wang, P. Peng, S. L. Zhang, L. Chen, D. Li, Q. Zhou, and J. Zhang, Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases, Nat. Phys. 12(6), 540 (2016)

    Article  Google Scholar 

  9. Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, and J. W. Pan, Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates, Science 354(6308), 83 (2016)

    Article  ADS  Google Scholar 

  10. W. Sun, B. Z. Wang, X. T. Xu, C. R. Yi, L. Zhang, Z. Wu, Y. Deng, X. J. Liu, S. Chen, and J. W. Pan, Highly controllable and robust 2D spin–orbit coupling for quantum gases, Phys. Rev. Lett. 121(15), 150401 (2018)

    Article  ADS  Google Scholar 

  11. X. T. Xu, Z. Y. Wang, R. H. Jiao, C. R. Yi, W. Sun, and S. Chen, Ultra-low noise magnetic field for quantum gases, Rev. Sci. Instrum. 90(5), 054708 (2019)

    Article  ADS  Google Scholar 

  12. J. Ye, H. J. Kimble, and H. Katori, Quantum state engineering and precision metrology using state-insensitive light traps, Science 320(5884), 1734 (2008)

    Article  ADS  Google Scholar 

  13. A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey, Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms, Nat. Phys. 6(4), 289 (2010)

    Article  Google Scholar 

  14. A. J. Daley, Quantum computing and quantum simulation with group-II atoms, Quantum Inform. Process. 10(6), 865 (2011)

    Article  Google Scholar 

  15. S. Taie, R. Yamazaki, S. Sugawa, and Y. Takahashi, An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling, Nat. Phys. 8(11), 825 (2012)

    Article  Google Scholar 

  16. S. Stellmer, F. Schreck, and T. C. Killian, in: Annual Review of Cold Atoms and Molecules, Vol. 2, Chapter 1, 1st Ed., World Scientific, Singapore, 2014

    Google Scholar 

  17. G. Pagano, M. Mancini, G. Cappellini, P. Lombardi, F. Schafer, H. Hu, X. J. Liu, J. Catani, C. Sias, M. Inguscio, and L. Fallani, A one-dimensional liquid of fermions with tunable spin, Nat. Phys. 10(3), 198 (2014)

    Article  Google Scholar 

  18. X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S. Safronova, P. Zoller, A. M. Rey, and J. Ye, Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism, Science 345(6203), 1467 (2014)

    Article  ADS  Google Scholar 

  19. F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch, and S. Fölling, Observation of two-orbital spin-exchange interactions with ultracold SU(N)-syrnmetric fermions, Nat. Phys. 10(10), 779 (2014)

    Article  Google Scholar 

  20. G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi, M. Siciliani de Cumis, P. Cancio, M. Pizzocaro, D. Calonico, F. Levi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, Direct observation of coherent interorbital spinexchange dynamics, Phys. Rev. Lett. 113(12), 120402 (2014)

    Article  ADS  Google Scholar 

  21. Y. G. Lin, Q. Wang, Y. Li, F. Meng, B. K. Lin, E. J. Zang, Z. Sun, F. Fang, T. C. Li, and Z. J. Fang, First evaluation and frequency measurement of the strontium optical lattice clock at NIM, Chin. Phys. Lett. 32(9), 090601 (2015)

    Article  ADS  Google Scholar 

  22. X. Tian, Q. Xu, M. Yin, D. Kong, Y. Wang, B. Lu, H. Liu, J. Ren, and H. Chang, Experiment study on optical lattice clock of strontium at NTSC, Acta Opt. Sin. 35(s1), s102001 (2015)

    Article  Google Scholar 

  23. M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and L. Fallani, Observation of chiral edge states with neutral fermions in synthetic Hall ribbons, Science 349(6255), 1510 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. B. Song, C. He, S. Zhang, E. Hajiyev, W. Huang, X. J. Liu, and G. B. Jo, Spin-orbit-coupled two-electron Fermi gases of ytterbium atoms, Phys. Rev. A 94, 061604(R) (2016)

    Article  ADS  Google Scholar 

  25. L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M. Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio, and L. Fallani, Synthetic dimensions and spin–orbit coupling with an optical clock transition, Phys. Rev. Lett. 117(22), 220401 (2016)

    Article  ADS  Google Scholar 

  26. S. Kolkowitz, S. L. Bromley, T. Bothwell, M. L. Wall, G. E. Marti, A. P. Koller, X. Zhang, A. M. Rey, and J. Ye, Spin–orbit-coupled fermions in an optical lattice clock, Nature 542(7639), 66 (2017)

    Article  ADS  Google Scholar 

  27. S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. D. Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, A Fermi-degenerate three-dimensional optical lattice clock, Science 358(6359), 90 (2017)

    Article  ADS  Google Scholar 

  28. B. Song, L. Zhang, C. He, T. F. J. Poon, E. Hajiyev, S. Zhang, X. J. Liu, and G. B. Jo, Observation of symmetry-protected topological band with ultracold fermions, Sci. Adv. 4(2), eaao4748 (2018)

    Article  ADS  Google Scholar 

  29. A. Goban, R. B. Hutson, G. E. Marti, S. L. Campbell, M. A. Perlin, P. S. Julienne, J. P. D’Incao, A. M. Rey, and J. Ye, Emergence of multi-body interactions in a fermionic lattice clock, Nature 563(7731), 369 (2018)

    Article  ADS  Google Scholar 

  30. B. Song, C. He, S. Niu, L. Zhang, Z. Ren, X. J. Liu, and G. B. Jo, Observation of nodal-line semimetal with ultracold fermions in an optical lattice, Nat. Phys. 15(9), 911 (2019)

    Article  Google Scholar 

  31. L. Sonderhouse, C. Sanner, R. B. Hutson, A. Goban, T. Bilitewski, L. Yan, W. R. Milner, A. M. Rey, and J. Ye, Thermodynamics of a deeply degenerate SU(N)-symmetric Fermi gas, Nat. Phys. 16(12), 1216 (2020)

    Article  Google Scholar 

  32. P. Lauria, W. T. Kuo, N. R. Cooper, and J. T. Barreiro, Experimental realization of a fermionic spin-momentum lattice, Phys. Rev. Lett. 128(24), 245301 (2022)

    Article  ADS  Google Scholar 

  33. M. C. Liang, Y. D. Wei, L. Zhang, X. J. Wang, H. Zhang, W. W. Wang, W. Qi, X. J. Liu, and X. Zhang, Realization of Qi–Wu–Zhang model in spin–orbitcoupled ultracold fermions, Phys. Rev. Res. 5(1), L012006 (2023)

    Article  Google Scholar 

  34. J. Dalibard, F. Gerbier, G. Juzeliunas, and P. Ohberg, Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83(4), 1523 (2011)

    Article  ADS  Google Scholar 

  35. N. Goldman, G. Juzeliunas, P. Ohberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77(12), 126401 (2014)

    Article  ADS  Google Scholar 

  36. H. Zhai, Degenerate quantum gases with spin-orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  37. L. Zhang and X. J. Liu, in: Synthetic Spin–Orbit Coupling in Cold Atoms, Chapter 1, pp 1–87, edited by W. Zhang, W. Yi, and C. A. R. S. de Melo, World Scientific, Singapore, 2018

    Chapter  Google Scholar 

  38. G. W. F. Drake (Ed.), Atomic, Molecular, & Optical Physics Handbook, American Institute of Physics, Woodbury, N.Y., 1996

    Google Scholar 

  39. H. Zhang, W.-W. Wang, C. Qiao, L. Zhang, M.-C. Liang, R. Wu, X.-J. Wang, X.-J. Liu, and X. Zhang, Topological spin-orbit-coupled fermions beyond rotating wave approximation, under review by Phys. Rev. Lett.

  40. W. Qi, M. C. Liang, H. Zhang, Y. D. Wei, W. W. Wang, X. J. Wang, and X. Zhang, Experimental realization of degenerate Fermi gases of 87Sr atoms with 10 or two spin components, Chin. Phys. Lett. 36(9), 093701 (2019)

    Article  ADS  Google Scholar 

  41. H. J. Metcalf and P. Straten, Laser Cooling and Trapping, Springer, New York, USA, 1999

    Book  Google Scholar 

  42. C. J. Foot, Atomic Physics, Oxford: Oxford University Press, 2005

    MATH  Google Scholar 

  43. D. A. Steck, Quantum and Atom Optics, available online at URL: steck.us/teaching, revision 0.12. 5, 26 January 2019

  44. H. Zhai, Ultracold Atomic Physics, Cambridge University Press, Cambridge, 2021

    Book  MATH  Google Scholar 

  45. C. Qiao and W. Zhang, Spontaneous decay-induced quantum dynamics in Rydberg-blockaded A-type atoms, J. Phys. At. Mol. Opt. Phys. 54(20), 205501 (2021)

    Article  ADS  Google Scholar 

  46. C. Cohen-Tannoudji and D. Guery-Odelin, Advances in Atomic Physics: An Overview, Singapore: World Scientific, 2011

    Book  MATH  Google Scholar 

  47. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, 1997

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to Murray Barrett for very insightful discussions. We thank Meng Khoon Tey, Li-Yang Xie, Bo-Yang Wang, Yu-Dong Wei, Biao Wu, Shina Tan, Yige Lin, Xiaoji Zhou for discussion and technical support. This work was supported by the Chinese Academy of Sciences Strategic Priority Research Program under Grant No. XDB35020100, the National Key Research and Development Program of China under Grant No. 2018YFA0305601, the National Natural Science Foundation of China under Grant No. 11874073, the Hefei National Laboratory and the Scientific and Technological Innovation 2030 Key Program of Quantum Communication and Quantum Computing under Grant No. 2021ZD0301903. H.Z. and X.Z. conceived the project. W.-W.W., H.Z., C.Q., M.-C.L., R.W. performed the experiments. C.Q., H.Z., W.-W.W. performed the numerical computations. All authors contributed to the data analysis and the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Zhang or Xibo Zhang.

Additional information

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Availability of data and material

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WW., Zhang, H., Qiao, C. et al. Realization of highly isolated stable few-spin systems based on alkaline-earth fermions. Front. Phys. 18, 62303 (2023). https://doi.org/10.1007/s11467-023-1314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1314-2

Keywords

Navigation