Skip to main content
Log in

Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Analytical expressions for scaling of brain wave spectra derived from the general nonlinear wave Hamiltonian form show excellent agreement with experimental “neuronal avalanche” data. The theory of the weakly evanescent nonlinear brain wave dynamics [Phys. Rev. Research 2, 023061 (2020); J. Cognitive Neurosci. 32, 2178 (2020)] reveals the underlying collective processes hidden behind the phenomenological statistical description of the neuronal avalanches and connects together the whole range of brain activity states, from oscillatory wave-like modes, to neuronal avalanches, to incoherent spiking, showing that the neuronal avalanches are just the manifestation of the different nonlinear side of wave processes abundant in cortical tissue. In a more broad way these results show that a system of wave modes interacting through all possible combinations of the third order nonlinear terms described by a general wave Hamiltonian necessarily produces anharmonic wave modes with temporal and spatial scaling properties that follow scale free power laws. To the best of our knowledge this has never been reported in the physical literature and may be applicable to many physical systems that involve wave processes and not just to neuronal avalanches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

References

  1. V. L. Galinsky and L. R. Frank, Universal theory of brain waves: From linear loops to nonlinear synchronized spiking and collective brain rhythms, Phys. Rev. Research 2, 023061 (2020)

    Article  ADS  Google Scholar 

  2. V. L. Galinsky and L. R. Frank, Brain waves: Emergence of localized, persistent, weakly evanescent cortical loops, J. Cogn. Neurosci. 32(11), 2178 (2020)

    Article  Google Scholar 

  3. G. Buzsaki, Rhythms of the Brain, Oxford University Press, 2006

  4. A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117(4), 500 (1952)

    Article  Google Scholar 

  5. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1(6), 445 (1961)

    Article  ADS  Google Scholar 

  6. J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proceedings of the IRE 50(10), 2061 (1962)

    Article  Google Scholar 

  7. C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J. 35(1), 193 (1981)

    Article  ADS  Google Scholar 

  8. E. M. Izhikevich, Simple model of spiking neurons, IEEE Trans. Neural Netw. 14(6), 1569 (2003)

    Article  MathSciNet  Google Scholar 

  9. W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, Cambridge University Press, New York, NY, USA, 2014

    Book  Google Scholar 

  10. A. Kulkarni, J. Ranft, and V. Hakim, Synchronization, stochasticity, and phase waves in neuronal networks with spatially-structured connectivity, Front. Comput. Neurosci. 14, 569644 (2020)

    Article  Google Scholar 

  11. R. Kim and T. J. Sejnowski, Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks, Nat. Neurosci. 24(1), 129 (2021)

    Article  Google Scholar 

  12. J. M. Beggs and D. Plenz, Neuronal avalanches in neocortical circuits, J. Neurosci. 23(35), 11167 (2003)

    Article  Google Scholar 

  13. J. M. Beggs and D. Plenz, Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures, J. Neurosci. 24(22), 5216 (2004)

    Article  Google Scholar 

  14. D. Plenz, T. L. Ribeiro, S. R. Miller, P. A. Kells, A. Vakili, and E. L. Capek, Self-organized criticality in the brain, Front. Phys. (Lausanne) 9, 639389 (2021)

    Article  Google Scholar 

  15. N. Friedman, S. Ito, B. A. Brinkman, M. Shimono, R. E. DeVille, K. A. Dahmen, J. M. Beggs, and T. C. Butler, Universal critical dynamics in high resolution neuronal avalanche data, Phys. Rev. Lett. 108(20), 208102 (2012)

    Article  ADS  Google Scholar 

  16. D. R. Chialvo, Emergent complex neural dynamics, Nat. Phys. 6(10), 744 (2010)

    Article  Google Scholar 

  17. J. M. Beggs and N. Timme, Being critical of criticality in the brain, Front. Physiol. 3, 163 (2012)

    Article  Google Scholar 

  18. V. Priesemann, M. Wibral, M. Valderrama, R. Pröpper, M. Le Van Quyen, T. Geisel, J. Triesch, D. Nikolić, and M. H. Munk, Spike avalanches in vivo suggest a driven, slightly subcritical brain state, Front. Syst. Neurosci. 8, 108 (2014)

    Article  Google Scholar 

  19. B. Cramer, D. Stöckel, M. Kreft, M. Wibral, J. Schemmel, K. Meier, and V. Priesemann, Control of criticality and computation in spiking neuromorphic networks with plasticity, Nat. Commun. 11(1), 2853 (2020)

    Article  ADS  Google Scholar 

  20. A. J. Fontenele, N. A. P. de Vasconcelos, T. Feliciano, L. A. A. Aguiar, C. Soares-Cunha, B. Coimbra, L. Dalla Porta, S. Ribeiro, A. J. Rodrigues, N. Sousa, P. V. Carelli, and M. Copelli, Criticality between cortical states, Phys. Rev. Lett. 122(20), 208101 (2019)

    Article  ADS  Google Scholar 

  21. L. J. Fosque, R. V. Williams-García, J. M. Beggs, and G. Ortiz, Evidence for quasicritical brain dynamics, Phys. Rev. Lett. 126(9), 098101 (2021)

    Article  ADS  Google Scholar 

  22. P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59(4), 381 (1987)

    Article  ADS  Google Scholar 

  23. P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A 38(1), 364 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Zapperi, K. B. Lauritsen, and H. E. Stanley, Self-organized branching processes: Mean-field theory for avalanches, Phys. Rev. Lett. 75(22), 4071 (1995)

    Article  ADS  Google Scholar 

  25. K. Bækgaard Lauritsen, S. Zapperi, and H. E. Stanley, Self-organized branching processes: Avalanche models with dissipation, Phys. Rev. E 54(3), 2483 (1996)

    Article  ADS  Google Scholar 

  26. C. W. Eurich, J. M. Herrmann, and U. A. Ernst, Finite-size effects of avalanche dynamics, Phys. Rev. E 66(6), 066137 (2002)

    Article  ADS  Google Scholar 

  27. C. Bédard, H. Kröger, and A. Destexhe, Does the 1/f frequency scaling of brain signals reflect self-organized critical states, Phys. Rev. Lett. 97(11), 118102 (2006)

    Article  ADS  Google Scholar 

  28. J. Touboul and A. Destexhe, Can power-law scaling and neuronal avalanches arise from stochastic dynamics, PLoS One 5(2), e8982 (2010)

    Article  ADS  Google Scholar 

  29. J. Touboul and A. Destexhe, Power-law statistics and universal scaling in the absence of criticality, Phys. Rev. E 95(1), 012413 (2017)

    Article  ADS  Google Scholar 

  30. P. A. Robinson, C. J. Rennie, and J. J. Wright, Propagation and stability of waves of electrical activity in the cerebral cortex, Phys. Rev. E 56(1), 826 (1997)

    Article  ADS  Google Scholar 

  31. D. P. Yang and P. A. Robinson, Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures, Phys. Rev. E 95(4), 042410 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. P. A. Robinson, C. J. Rennie, and D. L. Rowe, Dynamics of large-scale brain activity in normal arousal states and epileptic seizures, Phys. Rev. E 65(4), 041924 (2002)

    Article  ADS  Google Scholar 

  33. S. di Santo, P. Villegas, R. Burioni, and M. A. Muñoz, Landau-Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization, Proc. Natl. Acad. Sci. USA 115(7), E1356 (2018), Available at: www.pnas.org/content/115/7/E1356.full.pdf

    Article  ADS  Google Scholar 

  34. E. D. Gireesh and D. Plenz, Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3, Proc. Natl. Acad. Sci. USA 105(21), 7576 (2008)

    Article  ADS  Google Scholar 

  35. V. Buendía, P. Villegas, R. Burioni, and M. A. Muñoz, Hybrid-type synchronization transitions: Where incipient oscillations, scale-free avalanches, and bistability live together, Phys. Rev. Research 3(2), 023224 (2021)

    Article  ADS  Google Scholar 

  36. V. L. Galinsky and L. R. Frank, Collective synchronous spiking in a brain network of coupled nonlinear oscillators, Phys. Rev. Lett. 126(15), 158102 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  37. E. Ott and T. M. Antonsen, Long time evolution of phase oscillator systems, Chaos 19(2), 023117 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  38. I. V. Tyulkina, D. S. Goldobin, L. S. Klimenko, and A. Pikovsky, Dynamics of noisy oscillator populations beyond the Ott—Antonsen ansatz, Phys. Rev. Lett. 120(26), 264101 (2018)

    Article  ADS  Google Scholar 

  39. V. L. Galinsky and L. R. Frank, Critically synchronized brain waves form an effective, robust and flexible basis for human memory and learning, doi: https://doi.org/10.21203/rs.3.rs-2285943/v1 (2022)

  40. L. Frank, V. Galinsky, J. Townsend, R. A. Mueller, and B. Keehn, Imaging of brain electric field networks, doi: https://doi.org/10.21203/rs.3.rs-2432269/v1 (2023)

  41. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Dover Books on Chemistry Series, Dover Publications, Incorporated, 2013

  42. H. Daido, Generic scaling at the onset of macroscopic mutual entrainment in limit-cycle oscillators with uniform all-to-all coupling, Phys. Rev. Lett. 73(5), 760 (1994)

    Article  ADS  Google Scholar 

  43. J. D. Crawford, Scaling and singularities in the entrainment of globally coupled oscillators, Phys. Rev. Lett. 74(21), 4341 (1995)

    Article  ADS  Google Scholar 

Download references

Funding

LRF and VLG were supported by NSF grant ACI-1550405, UCOP MRPI grant MRP17454755 and NIH grant R01 AG054049.

Author information

Authors and Affiliations

Authors

Contributions

VLG and LRF developed the theoretical formalism, performed the analytic calculations and performed the numerical simulations. Both VLG and LRF contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Vitaly L. Galinsky or Lawrence R. Frank.

Additional information

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galinsky, V.L., Frank, L.R. Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?. Front. Phys. 18, 45301 (2023). https://doi.org/10.1007/s11467-023-1273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1273-7

Keywords

Navigation