Skip to main content
Log in

Transfer of quantum entangled states between superconducting qubits and microwave field qubits

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Transferring entangled states between matter qubits and microwave-field (or optical-field) qubits is of fundamental interest in quantum mechanics and necessary in hybrid quantum information processing and quantum communication. We here propose a way for transferring entangled states between superconducting qubits (matter qubits) and microwave-field qubits. This proposal is realized by a system consisting of multiple superconducting qutrits and microwave cavities. Here, “qutrit” refers to a three-level quantum system with the two lowest levels encoding a qubit while the third level acting as an auxiliary state. In contrast, the microwave-field qubits are encoded with coherent states of microwave cavities. Because the third energy level of each qutrit is not populated during the operation, decoherence from the higher energy levels is greatly suppressed. The entangled states can be deterministically transferred because measurement on the states is not needed. The operation time is independent of the number of superconducting qubits or microwave-field qubits. In addition, the architecture of the circuit system is quite simple because only a coupler qutrit and an auxiliary cavity are required. As an example, our numerical simulations show that high-fidelity transfer of entangled states from two superconducting qubits to two microwave-field qubits is feasible with present circuit QED technology. This proposal is quite general and can be extended to transfer entangled states between other matter qubits (e.g., atoms, quantum dots, and NV centers) and microwave- or optical-field qubits encoded with coherent states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. P. Yang, S. I. Chu, and S. Han, Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantum-interference-device qubits in cavity QED, Phys. Rev. A 67(4), 042311 (2003)

    Article  ADS  Google Scholar 

  2. J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B 68(6), 064509 (2003)

    Article  ADS  Google Scholar 

  3. A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69(6), 062320 (2004)

    Article  ADS  Google Scholar 

  4. J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)

    Article  ADS  Google Scholar 

  5. S. Schmidt and J. Koch, Circuit QED lattices: Towards quantum simulation with superconducting circuits, Ann. Phys. 525(6), 395 (2013)

    Article  Google Scholar 

  6. X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong coupling regime, Nat. Phys. 6(10), 772 (2010)

    Article  Google Scholar 

  8. F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime, Nat. Phys. 13(1), 44 (2017)

    Article  Google Scholar 

  9. Y. H. Lin, L. B. Nguyen, N. Grabon, J. S. Miguel, N. Pankratova, and V. E. Manucharyan, Demonstration of protection of a superconducting qubit from energy decay, Phys. Rev. Lett. 120, 150503 (2018)

    Article  ADS  Google Scholar 

  10. C. P. Yang, S. I. Chu, and S. Han, Quantum information transfer and entanglement with SQUID qubits in cavity QED: A dark-state scheme with tolerance for nonuniform device parameter, Phys. Rev. Lett. 92(11), 117902 (2004)

    Article  ADS  Google Scholar 

  11. Z. Kis and E. Paspalakis, Arbitrary rotation and entanglement of flux SQUID qubits, Phys. Rev. B 69(2), 024510 (2004)

    Article  ADS  Google Scholar 

  12. F. W. Strauch and C. J. Williams, Theoretical analysis of perfect quantum state transfer with superconducting qubits, Phys. Rev. B 78(9), 094516 (2008)

    Article  ADS  Google Scholar 

  13. C. P. Yang, Quantum information transfer with superconducting flux qubits coupled to a resonator, Phys. Rev. A 82(5), 054303 (2010)

    Article  ADS  Google Scholar 

  14. F. Mei, G. Chen, L. Tian, S. L. Zhu, and S. Jia, Robust quantum state transfer via topological edge states in superconducting qubit chains, Phys. Rev. A 98(1), 012331 (2018)

    Article  ADS  Google Scholar 

  15. M. A. Sillanpää, J. I. Park, and R. W. Simmonds, Coherent quantum state storage and transfer between two phase qubits via a resonant cavity, Nature 449(7161), 438 (2007)

    Article  ADS  Google Scholar 

  16. X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z. Y. Xue, Z. Q. Yin, and L. Sun, Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Phys. Rev. Appl. 10(5), 054009 (2018)

    Article  ADS  Google Scholar 

  17. C. P. Yang and S. Han, Preparation of Greenberger-Horne-Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED, Phys. Rev. A 70(6), 062323 (2004)

    Article  ADS  Google Scholar 

  18. S. L. Zhu, Z. D. Wang, and P. Zanardi, Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity, Phys. Rev. Lett. 94(10), 100502 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. K. H. Song, Z. W. Zhou, and G. C. Guo, Quantum logic gate operation and entanglement with superconducting quantum interference devices in a cavity via a Raman transition, Phys. Rev. A 71(5), 052310 (2005)

    Article  ADS  Google Scholar 

  20. T. Tanamoto, Y. Liu, S. Fujita, X. Hu, and F. Nori, Producing cluster states in charge qubits and flux qubits, Phys. Rev. Lett. 97(23), 230501 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. X. L. Zhang, K. L. Gao, and M. Feng, Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED, Phys. Rev. A 74(2), 024303 (2006)

    Article  ADS  Google Scholar 

  22. J. Q. You, X. Wang, T. Tanamoto, and F. Nori, Efficient one-step generation of large cluster states with solid-state circuits, Phys. Rev. A 75(5), 052319 (2007)

    Article  ADS  Google Scholar 

  23. Y. D. Wang, S. Chesi, D. Loss, and C. Bruder, One-step multiqubit Greenberger-Horne-Zeilinger state generation in a circuit QED system, Phys. Rev. B 81(10), 104524 (2010)

    Article  ADS  Google Scholar 

  24. C. P. Yang, Preparation of n-qubit Greenberger—Horne—Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants, Phys. Rev. A 83(6), 062302 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  25. W. Feng, P. Wang, X. Ding, L. Xu, and X. Q. Li, Generating and stabilizing the Greenberger—Horne—Zeilinger state in circuit QED: Joint measurement, Zeno effect, and feedback, Phys. Rev. A 83(4), 042313 (2011)

    Article  ADS  Google Scholar 

  26. S. Aldana, Y. D. Wang, and C. Bruder, Greenberger—Horne—Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus, Phys. Rev. B 84(13), 134519 (2011)

    Article  ADS  Google Scholar 

  27. T. Liu, Q. P. Su, S. J. Xiong, J. M. Liu, C. P. Yang, and F. Nori, Generation of a macroscopic entangled coherent state using quantum memories in circuit QED, Sci. Rep. 6(1), 32004 (2016)

    Article  ADS  Google Scholar 

  28. C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)

    Article  ADS  Google Scholar 

  29. Y. H. Kang, Y. H. Chen, Z. C. Shi, J. Song, and Y. Xia, Fast preparation of W states with superconducting quantum interference devices by using dressed states, Phys. Rev. A 94(5), 052311 (2016)

    Article  ADS  Google Scholar 

  30. X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)

    Article  ADS  Google Scholar 

  31. T. Liu, Q. P. Su, Y. Zhang, Y. L. Fang, and C. P. Yang, Generation of quantum entangled states of multiple groups of qubits distributed in multiple cavities, Phys. Rev. A 101(1), 012337 (2020)

    Article  ADS  Google Scholar 

  32. C. Song, K. Xu, W. Liu, C. Yang, S. B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y. A. Chen, C. Y. Lu, S. Han, and J. W. Pan, 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett. 119(18), 180511 (2017)

    Article  ADS  Google Scholar 

  33. M. Gong, M. C. Chen, Y. Zheng, S. Wang, C. Zha, H. Deng, Z. Yan, H. Rong, Y. Wu, S. Li, F. Chen, Y. Zhao, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, A. D. Castellano, H. Wang, C. Peng, C. Y. Lu, X. Zhu, and J. W. Pan, Genuine 12-qubit entanglement on a superconducting quantum processor, Phys. Rev. Lett. 122(11), 110501 (2019)

    Article  ADS  Google Scholar 

  34. C. Song, K. Xu, H. Li, Y. R. Zhang, X. Zhang, W. Liu, Q. Guo, Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan, D. Zheng, D. W. Wang, H. Wang, and S. Y. Zhu, Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits, Science 365(6453), 574 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Romanenko, R. Pilipenko, S. Zorzetti, D. Frolov, M. Awida, S. Belomestnykh, S. Posen, and A. Grassellino, Three-dimensional superconducting resonators at T < 20 mK with photon lifetimes up to τ = 2 s, Phys. Rev. Appl. 13(3), 034032 (2020)

    Article  ADS  Google Scholar 

  36. M. Mariantoni, F. Deppe, A. Marx, R. Gross, F. K. Wilhelm, and E. Solano, Two-resonator circuit quantum electrodynamics: A superconducting quantum switch, Phys. Rev. B 78(10), 104508 (2008)

    Article  ADS  Google Scholar 

  37. S. T. Merkel and F. K. Wilhelm, Generation and detection of NOON states in superconducting circuits, New J. Phys. 12(9), 093036 (2010)

    Article  ADS  Google Scholar 

  38. F. W. Strauch, K. Jacobs, and R. W. Simmonds, Arbitrary control of entanglement between two superconducting resonators, Phys. Rev. Lett. 105(5), 050501 (2010)

    Article  ADS  Google Scholar 

  39. Y. Hu and L. Tian, Deterministic generation of entangled photons in superconducting resonator arrays, Phys. Rev. Lett. 106(25), 257002 (2011)

    Article  ADS  Google Scholar 

  40. C. P. Yang, Q. P. Su, and S. Han, Generation of Greenberger—Horne—Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86(2), 022329 (2012)

    Article  ADS  Google Scholar 

  41. P. B. Li, S. Y. Gao, and F. L. Li, Engineering two-mode entangled states between two superconducting resonators by dissipation, Phys. Rev. A 86(1), 012318 (2012)

    Article  ADS  Google Scholar 

  42. C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit, Phys. Rev. A 87(2), 022320 (2013)

    Article  ADS  Google Scholar 

  43. S. J. Xiong, Z. Sun, J. M. Liu, T. Liu, and C. P. Yang, Efficient scheme for generation of photonic NOON states in circuit QED, Opt. Lett. 40(10), 2221 (2015)

    Article  ADS  Google Scholar 

  44. R. Sharma and F. W. Strauch, Quantum state synthesis of superconducting resonators, Phys. Rev. A 93(1), 012342 (2016)

    Article  ADS  Google Scholar 

  45. Z. Li, S. Ma, Z. P. Yang, A. P. Fang, P. Li, S. Y. Gao, and F. L. Li, Generation and replication of continuous-variable quadripartite cluster and Greenberger-Horne-Zeilinger states in four chains of superconducting transmission line resonators, Phys. Rev. A 93(4), 042305 (2016)

    Article  ADS  Google Scholar 

  46. Y. J. Zhao, C. Q. Wang, X. B. Zhu, and Y. X. Liu, Engineering entangled microwave photon states through multiphoton interactions between two cavity fields and a superconducting qubit, Sci. Rep. 6(1), 23646 (2016)

    Article  ADS  Google Scholar 

  47. Q. P. Su, H. H. Zhu, L. Yu, Y. Zhang, S. J. Xiong, J. M. Liu, and C. P. Yang, Generating double NOON states of photons in circuit QED, Phys. Rev. A 95(2), 022339 (2017)

    Article  ADS  Google Scholar 

  48. C. P. Yang and Z. F. Zheng, Deterministic generation of Greenberger-Horne-Zeilinger entangled states of cat-state qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)

    Article  ADS  Google Scholar 

  49. M. Li, M. Hua, M. Zhang, and F. G. Deng, Entangling two high-Q microwave resonators assisted by a resonator terminated with SQUIDs, New J. Phys. 21(7), 073025 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  50. T. Liu, Y. Zhang, B. Q. Guo, C. S. Yu, and W. N. Zhang, Creation of superposition of arbitrary states encoded in two high-Q cavities, Opt. Express 27(19), 27168 (2019)

    Article  ADS  Google Scholar 

  51. Y. Zhang, T. Liu, J. Zhao, Y. Yu, and C. P. Yang, Generation of hybrid Greenberger-Horne-Zeilinger entangled states of particlelike and wavelike optical qubits in circuit QED, Phys. Rev. A 101(6), 062334 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  52. M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, H. Wang, J. M. Martinis, and A. N. Cleland, Generation of Fock states in a superconducting quantum circuit, Nature 454(7202), 310 (2008)

    Article  ADS  Google Scholar 

  53. B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Deterministically encoding quantum information using 100-Photon Schröinger cat states, Science 342(6158), 607 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, A Schrödinger cat living in two boxes, Science 352(6289), 1087 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, Deterministic entanglement of photons in two superconducting microwave resonators, Phys. Rev. Lett. 106(6), 060401 (2011)

    Article  ADS  Google Scholar 

  56. A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58(6), 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  57. D. P. DiVincenzo and P. W. Shor, Fault-tolerant error correction with efficient quantum codes, Phys. Rev. Lett. 77(15), 3260 (1996)

    Article  ADS  Google Scholar 

  58. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced measurements: Beating the standard quantum limit, Science 306(5700), 1330 (2004)

    Article  ADS  Google Scholar 

  59. X. Wang, Quantum teleportation of entangled coherent states, Phys. Rev. A 64(2), 022302 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  60. H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A 65(4), 042305 (2002)

    Article  ADS  Google Scholar 

  61. J. Joo, W. J. Munro, and T. P. Spiller, Quantum metrology with entangled coherent states, Phys. Rev. Lett. 107(8), 083601 (2011)

    Article  ADS  Google Scholar 

  62. P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscopically distinct quantumsuperposition states as a bosonic code for amplitude damping, Phys. Rev. A 59(4), 2631 (1999)

    Article  ADS  Google Scholar 

  63. Q. C. Wu, Y. H. Zhou, B. L. Ye, T. Liu, and C. P. Yang, Nonadiabatic quantum state engineering by time-dependent decoherence-free subspaces in open quantum systems, New J. Phys. 23(11), 113005 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  64. H. Jeong and N. B. An, Greenberger—Horne—Zeilinger-type and W-type entangled coherent states: Generation and Bell-type inequality tests without photon counting, Phys. Rev. A 74(2), 022104 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  65. A. Blais, S. M. Girvin, and W. D. Oliver, Quantum information processing and quantum optics with circuit quantum electrodynamics, Nat. Phys. 16(3), 247 (2020)

    Article  Google Scholar 

  66. W. Cai, Y. Ma, W. Wang, C. L. Zou, and L. Sun, Bosonic quantum error correction codes in superconducting quantum circuits, Fundamental Research 1(1), 50 (2021)

    Article  Google Scholar 

  67. D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev. A 64(1), 012310 (2001)

    Article  ADS  Google Scholar 

  68. N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature 536(7617), 441 (2016)

    Article  ADS  Google Scholar 

  69. M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert, J. Salmilehto, L. Jiang, and S. M. Girvin, New class of quantum error-correcting codes for a bosonic mode, Phys. Rev. X 6(3), 031006 (2016)

    Google Scholar 

  70. L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang, Y. P. Song, C. L. Zou, S. M. Girvin, L. M. Duan, and L. Sun, Quantum error correction and universal gate set operation on a binomial bosonic logical qubit, Nat. Phys. 15(5), 503 (2019)

    Article  Google Scholar 

  71. A. Sørensen and K. Mølmer, Quantum computation with ions in thermal motion, Phys. Rev. Lett. 82(9), 1971 (1999)

    Article  ADS  Google Scholar 

  72. S. B. Zheng and G. C. Guo, Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85(11), 2392 (2000)

    Article  ADS  Google Scholar 

  73. D. F. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)

    Article  ADS  Google Scholar 

  74. Y. Xu, Y. Ma, W. Cai, X. Mu, W. Dai, W. Wang, L. Hu, X. Li, J. Han, H. Wang, Y. Song, Z. B. Yang, S. B. Zheng, and L. Sun, Demonstration of controlled-phase gates between two error-correctable photonic qubits, Phys. Rev. Lett. 124(12), 120501 (2020)

    Article  ADS  Google Scholar 

  75. M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92(20), 203501 (2008)

    Article  ADS  Google Scholar 

  76. Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett. 102(16), 163503 (2013)

    Article  ADS  Google Scholar 

  77. M. Scully and M. S. Zubairy, Quantum optics, Cambridge University Press, Cambridge, 1997, Chapter 2

    Book  Google Scholar 

  78. G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature 495(7440), 205 (2013)

    Article  ADS  Google Scholar 

  79. J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A 76(4), 042319 (2007)

    Article  ADS  Google Scholar 

  80. I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, Demonstration of a single-photon router in the microwave regime, Phys. Rev. Lett. 107(7), 073601 (2011)

    Article  ADS  Google Scholar 

  81. M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and A. A. Houck, Observation of a dissipative phase transition in a one-dimensional circuit QED lattice, Phys. Rev. X 7(1), 011016 (2017)

    Google Scholar 

  82. T. Liu, Z. F. Zheng, Y. Zhang, Y. L. Fang, and C. P. Yang, Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15(2), 21603 (2020)

    Article  ADS  Google Scholar 

  83. J. B. Chang, M. R. Vissers, A. D. Córcoles, M. Sandberg, J. Gao, D. W. Abraham, J. M. Chow, J. M. Gambetta, M. Beth Rothwell, G. A. Keefe, M. Steffen, and D. P. Pappas, Improved superconducting qubit coherence using titanium nitride, Appl. Phys. Lett. 103(1), 012602 (2013)

    Article  ADS  Google Scholar 

  84. A. P. M. Place, L. V. H. Rodgers, P. Mundada, B. M. Smitham, M. Fitzpatrick, Z. Leng, A. Premkumar, J. Bryon, S. Sussman, G. Cheng, et al., New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds, arXiv: 2003.00024 (2020)

  85. A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, Planar superconducting resonators with internal quality factors above one million, Appl. Phys. Lett. 100(11), 113510 (2012)

    Article  ADS  Google Scholar 

  86. P. W. Woods, G. Calusine, A. Melville, A. Sevi, E. Golden, D. K. Kim, D. Rosenberg, J. L. Yoder, and W. D. Oliver, Determining interface dielectric losses in superconducting coplanar waveguide resonators, Phys. Rev. Appl. 12(1), 014012 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Key-Area Research and Development Program of Guang Dong Province (Grant No. 2018B030326001), the National Natural Science Foundation of China (NSFC) (Grant Nos. 12004253, 11074062, 11374083, 11774076, 11804228, 11965017, and U21A20436), and the Jiangxi Natural Science Foundation (Grant Nos. 20192ACBL20051, 20212BAB211019, and 20212BAB201025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chui-Ping Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Guo, BQ., Zhou, YH. et al. Transfer of quantum entangled states between superconducting qubits and microwave field qubits. Front. Phys. 17, 61502 (2022). https://doi.org/10.1007/s11467-022-1166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1166-1

Keywords

Navigation