Skip to main content
Log in

Nonreciprocal transition between two indirectly coupled energy levels

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We propose a theoretical scheme to realize nonreciprocal transition between two energy levels that can not coupled directly. Suppose they are coupled indirectly by two auxiliary levels with a cyclic four-level configuration, and the four transitions in the cyclic configuration are controlled by external fields. The indirectly transition become nonreciprocal when the time reversal symmetry of the system is broken by the synthetic magnetic flux, i.e., the total phase of the external driving fields through the cyclic four-level configuration. The nonreciprocal transition can be identified by the elimination of a spectral line in the spontaneous emission spectrum. Our work introduces a feasible way to observe nonreciprocal transition in a wide range of multi-level systems, including natural atoms or ions with parity symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. K. Pathria, Statistical Mechanics, 2nd Ed., Butterworth-Heinemann, Oxford, 1996

    MATH  Google Scholar 

  2. A. Einstein, On the quantum theory of radiation, Phys. Z. 18, 121 (1917)

    Google Scholar 

  3. P. Král and M. Shapiro, Cyclic population transfer in quantum systems with broken symmetry, Phys. Rev. Lett. 87(18), 183002 (2001)

    Article  ADS  Google Scholar 

  4. H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R. Hemmer, and M. O. Scully, Electromagnetically induced transparency controlled by a microwave field, Phys. Rev. A 80(2), 023820 (2009)

    Article  ADS  Google Scholar 

  5. W. Z. Jia and L. F. Wei, Gains without inversion in quantum systems with broken parities, Phys. Rev. A 82(1), 013808 (2010)

    Article  ADS  Google Scholar 

  6. P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, Two-step Enantio-selective optical switch, Phys. Rev. Lett. 90(3), 033001 (2003)

    Article  ADS  Google Scholar 

  7. Y. Li, C. Bruder, and C. P. Sun, Generalized Stern-Gerlach effect for chiral molecules, Phys. Rev. Lett. 99(13), 130403 (2007)

    Article  ADS  Google Scholar 

  8. Y. X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit, Phys. Rev. Lett. 95(8), 087001 (2005)

    Article  ADS  Google Scholar 

  9. J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd, Josephson persistent-current qubit, Science 285(5430), 1036 (1999)

    Article  Google Scholar 

  10. L. Zhou, L. P. Yang, Y. Li, and C. P. Sun, Quantum routing of single photons with a cyclic three-level system, Phys. Rev. Lett. 111(10), 103604 (2013)

    Article  ADS  Google Scholar 

  11. Y. X. Liu, H. C. Sun, Z. H. Peng, A. Miranowicz, J. S. Tsai, and F. Nori, Controllable microwave three-wave mixing via a single three-level superconducting quantum circuit, Sci. Rep. 4(1), 7289 (2015)

    Article  Google Scholar 

  12. Y. J. Zhao, J. H. Ding, Z. H. Peng, and Y. X. Liu, Realization of microwave amplification, attenuation, and frequency conversion using a single three-level superconducting quantum circuit, Phys. Rev. A 95(4), 043806 (2017)

    Article  ADS  Google Scholar 

  13. Z. H. Wang, C. P. Sun, and Y. Li, Microwave degenerate parametric down-conversion with a single cyclic three-level system in a circuit-QED setup, Phys. Rev. A 91(4), 043801 (2015)

    Article  ADS  Google Scholar 

  14. A. Barfuss, J. Kölbl, L. Thiel, J. Teissier, M. Kasperczyk, and P. Maletinsky, Phase-controlled coherent dynamics of a single spin under closed-contour interaction, Nat. Phys. 14(11), 1087 (2018)

    Article  Google Scholar 

  15. X. W. Xu, Y. J. Zhao, H. Wang, A. X. Chen, and Y. X. Liu, Nonreciprocal transition between two nondegenerate energy levels, Photon. Res. 9(5), 879 (2021)

    Article  Google Scholar 

  16. J. Zhang, B. Peng, I. M. C. K. Özdemir, Y. X. Liu, H. Jing, X. Y. Lü, Y. L. Liu, L. Yang, and F. Nori, Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes, Phys. Rev. B 92(11), 115407 (2015)

    Article  ADS  Google Scholar 

  17. Y. Jiang, S. Maayani, T. Carmon, F. Nori, and H. Jing, Nonreciprocal phonon laser, Phys. Rev. Appl. 10(6), 064037 (2018)

    Article  ADS  Google Scholar 

  18. X. W. Xu, C. Ye, Y. Li, and A. X. Chen, Enantiomeric-excess determination based on nonreciprocal-transition-induced spectral-line elimination, Phys. Rev. A 102(3), 033727 (2020)

    Article  ADS  Google Scholar 

  19. N. A. Ansari, J. Gea-Banacloche, and M. S. Zubairy, Phase-sensitive amplification in a three-level atomic system, Phys. Rev. A 41(9), 5179 (1990)

    Article  ADS  Google Scholar 

  20. C. A. Blockley and D. F. Walls, Intensity fluctuations in a frequency down-conversion process with three-level atoms, Phys. Rev. A 43(9), 5049 (1991)

    Article  ADS  Google Scholar 

  21. H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Cold atoms in cavity-generated dynamical optical potentials, Rev. Mod. Phys. 85(2), 553 (2013)

    Article  ADS  Google Scholar 

  22. M. Brownnutt, M. Kumph, P. Rabl, and R. Blatt, Ion-trap measurements of electric-field noise near surfaces, Rev. Mod. Phys. 87(4), 1419 (2015)

    Article  ADS  Google Scholar 

  23. M. Tomza, K. Jachymski, R. Gerritsma, A. Negretti, T. Calarco, Z. Idziaszek, and P. S. Julienne, Cold hybrid ionatom systems, Rev. Mod. Phys. 91(3), 035001 (2019)

    Article  ADS  Google Scholar 

  24. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, Chiral quantum optics, Nature 541(7638), 473 (2017)

    Article  ADS  Google Scholar 

  25. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Y. Zhu, R. C. F. Chan, and C. P. Lee, Spontaneous emission from a three-level atom, Phys. Rev. A 52(1), 710 (1995)

    Article  ADS  Google Scholar 

  27. S. Y. Zhu and M. O. Scully, Spectral line elimination and spontaneous emission cancellation via quantum interference, Phys. Rev. Lett. 76(3), 388 (1996)

    Article  ADS  Google Scholar 

  28. V. Weisskopf and E. Wigner, Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie, Z. Phys. 63(1–2), 54 (1930)

    Article  ADS  MATH  Google Scholar 

  29. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, UK, 1997

    Book  Google Scholar 

  30. H. F. Song, Y. B. Tang, S. L. Chen, L. J. Du, Y. Huang, H. Guan, and K. L. Gao, Combined experimental and theoretical probe of the branching fractions of the 4P3/2 state in 40Ca+, Phys. Rev. A 100(5), 052505 (2019)

    Article  ADS  Google Scholar 

  31. P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M. Steane, and D. N. Stacey, Measurement of the lifetime of the 3D2D5/2 state in 40Ca+, Phys. Rev. A 62(3), 032503 (2000)

    Article  ADS  Google Scholar 

  32. A. Kreuter, C. Becher, G. P. T. Lancaster, A. B. Mundt, C. Russo, H. Häffner, C. Roos, W. Hänsel, F. Schmidt-Kaler, R. Blatt, and M. S. Safronova, Experimental and theoretical study of the 3D2D-level lifetimes of 40Ca+, Phys. Rev. A 71(3), 032504 (2005)

    Article  ADS  Google Scholar 

  33. H. Shao, Y. Huang, H. Guan, Y. Qian, and K. Gao, Precision measurement of the 3D2D3/2-state lifetime in a single trapped 40Ca+, Phys. Rev. A 94(4), 042507 (2016)

    Article  ADS  Google Scholar 

  34. Z. Meir, M. Sinhal, M. S. Safronova, and S. Willitsch, Combining experiments and relativistic theory for establishing accurate radiative quantities in atoms: The lifetime of the 2P3/2 state in 40Ca+, Phys. Rev. A 101(1), 012509 (2020)

    Article  ADS  Google Scholar 

  35. P. Staanum, I. S. Jensen, R. G. Martinussen, D. Voigt, and M. Drewsen, Lifetime measurement of the metastable 3D2D5/2 state in the 40Ca+ ion using the shelving technique on a few-ion string, Phys. Rev. A 69(3), 032503 (2004)

    Article  ADS  Google Scholar 

  36. J. Jin and D. A. Church, Precision lifetimes for the Ca+ 4P2P levels: Experiment challenges theory at the 1% level, Phys. Rev. Lett. 70(21), 3213 (1993)

    Article  ADS  Google Scholar 

  37. S. Mannervik, J. Lidberg, L. O. Norlin, P. Royen, A. Schmitt, W. Shi, and X. Tordoir, Lifetime measurement of the metastable 4D2D3/2 level in Sr+ by optical pumping of a stored ion beam, Phys. Rev. Lett. 83(4), 698 (1999)

    Article  ADS  Google Scholar 

  38. V. Letchumanan, M. A. Wilson, P. Gill, and A. G. Sinclair, Lifetime measurement of the metastable 4D2D5/2 state in 88Sr+ using a single trapped ion, Phys. Rev. A 72(1), 012509 (2005)

    Article  ADS  Google Scholar 

  39. N. Yu, W. Nagourney, and H. Dehmelt, Radiative lifetime measurement of the Ba+ metastable D3/2 state, Phys. Rev. Lett. 78(26), 4898 (1997)

    Article  ADS  Google Scholar 

  40. E. A. Dijck, A. Mohanty, N. Valappol, M. N. N. Portela, L. Willmann, and K. Jungmann, Lifetime of the 5D2D5/2 level of 138Ba+ from quantum jumps with single and multiple Ba+ ions, Phys. Rev. A 97(3), 032508 (2018)

    Article  ADS  Google Scholar 

  41. J. Gurell, E. Biémont, K. Blagoev, V. Fivet, P. Lundin, S. Mannervik, L. O. Norlin, P. Quinet, D. Rostohar, P. Royen, and P. Schef, Laser-probing measurements and calculations of lifetimes of the 5d2D3/2 and 5 D2D5/2 metastable levels in Ba II, Phys. Rev. A 75(5), 052506 (2007)

    Article  ADS  Google Scholar 

  42. M. D. Havey, L. C. Balling, and J. J. Wright, Direct measurements of Ba+ excited-state lifetimes, Phys. Rev. A 15(6), 2332 (1977)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

X.-W. X. and H.-Q. S. are supported by the National Natural Science Foundation of China (NSFC) under Grant No. 12064010, the Natural Science Foundation of Hunan Province of China under Grant No. 2021JJ20036, and the Natural Science Foundation of Jiangxi Province of China under Grant No. 20192ACB21002. A.-X. C. is supported by NSFC under Grant No. 11775190.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xun-Wei Xu or Ai-Xi Chen.

Additional information

arXiv: 2010.09604. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1138-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XW., Shi, HQ. & Chen, AX. Nonreciprocal transition between two indirectly coupled energy levels. Front. Phys. 17, 42505 (2022). https://doi.org/10.1007/s11467-021-1138-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1138-x

Keywords

Navigation