Skip to main content
Log in

Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) provides us a powerful approach to resist all attacks at detection side. Besides the unconditional security, people also seek for high key generation rate, but MDI-QKD has relatively low key generation rate. In this paper, we provide an efficient approach to increase the key generation rate of MDI-QKD by adopting multiple degrees of freedom (DOFs) of single photons to generate keys. Compared with other high-dimension MDI-QKD protocols encoding in one DOF, our protocol is more flexible, for our protocol generating keys in independent subsystems and the detection failure or error in a DOF not affecting the information encoding in other DOFs. Based on above features, our MDI-QKD protocol may have potential application in future quantum communication field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett and G. Brassard, in: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India IEEE, New York, 175 (1984)

    Google Scholar 

  2. A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science 283(5410), 2050 (1999)

    Article  ADS  Google Scholar 

  4. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security of quantum key distribution using d-level systems, Phys. Rev. Lett. 88(12), 127902 (2002)

    Article  ADS  Google Scholar 

  5. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, Quantum key distribution over 67 km with a plug play system, New J. Phys. 4, 41 (2002)

    Article  ADS  Google Scholar 

  6. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, Quantum key distribution using gaussian-modulated coherent states, Nature 421(6920), 238 (2003)

    Article  ADS  Google Scholar 

  7. H. K. Lo, H. F. Chau, and M. Ardehali, Efficient quantum key distribution scheme and a proof of its unconditional security, J. Cryptol. 18(2), 133 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, Experimental demonstration of free-space decoy-state quantum key distribution over 144 km, Phys. Rev. Lett. 98(1), 010504 (2007)

    Article  ADS  Google Scholar 

  9. M. Koashi, Simple security proof of quantum key distribution based on complementarity, New J. Phys. 11(4), 045018 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Wang, W. Chen, Z. Q. Yin, D. Y. He, C. Hui, P. L. Hao, G. J. Fan-Yuan, C. Wang, L. J. Zhang, J. Kuang, S. F. Liu, Z. Zhou, Y. G. Wang, G. C. Guo, and Z. F. Han, Practical gigahertz quantum key distribution robust against channel disturbance, Opt. Lett. 43(9), 2030 (2018)

    Article  ADS  Google Scholar 

  11. X. D. Wu, Y. J. Wang, H. Zhong, Q. Liao, and Y. Guo, Plug-and-play dual-phase-modulated continuous variable quantum key distribution with photon subtraction, Front. Phys. 14(4), 41501 (2019)

    Article  ADS  Google Scholar 

  12. S. Wang, D. Y. He, Z. Q. Yin, F. Y. Lu, C. H. Cui, W. Chen, Z. Zhou, G. C. Guo, and Z. F. Han, Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system, Phys. Rev. X 9(2), 021046 (2019)

    Google Scholar 

  13. F. H. Xu, X. F. Ma, Q. Zhang, H. K. Lo, and J. W. Pan, Secure quantum key distribution with realistic devices, Rev. Mod. Phys. 92(2), 025002 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  14. Y. Zhang and Q. Ni, Design and analysis of random multiple access quantum key distribution, Quant. Engineer. 2(1), e31 (2020)

    Google Scholar 

  15. G. Chai, D. W. Li, Z. W. Cao, M. Zhang, P. Huang, and G. Zeng, Blind channel estimation for continuous-variable quantum key distribution, Quant. Engineer. 2(2), e37 (2020)

    Google Scholar 

  16. M. J. He, R. Malaney, and J. Green, Multimode CV-QKD with non-Gaussian operations, Quant. Engineer. 2, e40 (2020)

    Google Scholar 

  17. H. K. Lo, M. Curty, and K. Tamaki, Secure quantum key distribution, Nat. Photonics 8(8), 595 (2014)

    Article  ADS  Google Scholar 

  18. B. Qi, C. H. F. Fung, H. K. Lo, and X. F. Ma, Time-shift attack in practical quantum cryptosystems, Quantum Inf. Comput. 7, 73 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H. K. Lo, Quantum hacking: experimental demonstration of timeshift attack against practical quantum-keydistribution systems, Phys. Rev. A 78(4), 042333 (2008)

    Article  ADS  Google Scholar 

  20. N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, Device calibration impacts security of quantum key distribution, Phys. Rev. Lett. 107(11), 110501 (2011)

    Article  ADS  Google Scholar 

  21. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Hacking commercial quantum cryptography systems by tailored bright illumination, Nat. Photonics 4(10), 686 (2010)

    Article  ADS  Google Scholar 

  22. H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, Attacking a practical quantum-key-distribution system with wavelength dependent beam-splitter and multiwavelength sources, Phys. Rev. A 84(6), 062308 (2011)

    Article  ADS  Google Scholar 

  23. J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking of a continuous-variable quantum-key distribution system using a wavelength attack, Phys. Rev. A 87(6), 062329 (2013)

    Article  ADS  Google Scholar 

  24. V. Makarov and J. Skaar, Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols, Quantum Inf. Comput. 8, 6 (2007)

    MATH  Google Scholar 

  25. V. Makarov, A. Anisimov, and J. Skaar, Effects of detector efficiency mismatch on security of quantum cryptosystems, Phys. Rev. A 74(2), 022313 (2006)

    Article  ADS  Google Scholar 

  26. Y. Zhao, B. Qi, and H. K. Lo, Quantum key distribution with an unknown and untrusted source, Phys. Rev. A 77(5), 052327 (2008)

    Article  ADS  Google Scholar 

  27. X. Peng, H. Jiang, B. J. Xu, X. F. Ma, and H. Guo, Experimental quantum-key distribution with an untrusted source, Opt. Lett. 33(18), 2077 (2008)

    Article  ADS  Google Scholar 

  28. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett. 85(6), 1330 (2000)

    Article  MATH  ADS  Google Scholar 

  29. W. Y. Hwang, Quantum key distribution with high loss: Toward global secure communication, Phys. Rev. Lett. 91(5), 057901 (2003)

    Article  ADS  Google Scholar 

  30. H. K. Lo, X. F. Ma, and K. Chen, Decoy state quantum key distribution, Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  31. X. B. Wang, Beating the photon-number-splitting attack in practical quantum cryptography, Phys. Rev. Lett. 94(23), 230503 (2005)

    Article  ADS  Google Scholar 

  32. X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, Practical decoy state for quantum key distribution, Phys. Rev. A 72(1), 012326 (2005)

    Article  ADS  Google Scholar 

  33. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett. 98(23), 230501 (2007)

    Article  ADS  Google Scholar 

  34. S. Pironio, A. Acfn, N. Brunner, N. Gisin, S. Massar, and V. Scarani, Device-independent quantum key distribution secure against collective attacks, New J. Phys. 11(4), 045021 (2009)

    Article  ADS  Google Scholar 

  35. L. Masanes, S. Pironio, and A. Acfn, Secure deviceindependent quantum key distribution with causally independent measurement devices, Nat. Commun. 2(1), 238 (2011)

    Article  ADS  Google Scholar 

  36. A. Máttar, J. Kolodynski, P. Skrzypczyk, D. Cavalcanti, K. Banaszek, and A. Acfn, Device-independent quantum key distribution with single-photon sources, arXiv: 1803.07089 (2018)

  37. H. K. Lo, M. Curty, and B. Qi, Measurement-deviceindependent quantum key distribution, Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  38. Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, Experimental measurement-device-independent quantum key distribution, Phys. Rev. Lett. 111(13), 130502 (2013)

    Article  ADS  Google Scholar 

  39. F. H. Xu, M. Curty, B. Qi, and H. K. Lo, Practical aspects of measurement-device-independent quantum key distribution, New J. Phys. 15(11), 113007 (2013)

    Article  MATH  ADS  Google Scholar 

  40. Z. Y. Tang, Z. F. Liao, F. H. Xu, B. Qi, L. Qian, and H. K. Lo, Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution, Phys. Rev. Lett. 112(19), 190503 (2014)

    Article  ADS  Google Scholar 

  41. Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, Measurement-device-independent quantum key distribution over 200 km, Phys. Rev. Lett. 114(6), 069901 (2015)

    Article  ADS  Google Scholar 

  42. H. L. Yin, W. F. Cao, Y. Fu, Y. L. Tang, Y. Liu, T. Y. Chen, and Z. B. Chen, Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions, Opt. Lett. 39(18), 5451 (2014)

    Article  ADS  Google Scholar 

  43. C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, Phase-reference-free experiment of measurement-device-independent quantum key distribution, Phys. Rev. Lett. 115(16), 160502 (2015)

    Article  ADS  Google Scholar 

  44. H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, Measurement device-independent quantum key distribution over a 404 km optical fiber, Phys. Rev. Lett. 117(19), 190501 (2016)

    Article  ADS  Google Scholar 

  45. C. Wang, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, Measurement-device-independent quantum key distribution robust against environmental disturbances, Optica 4(9), 1016 (2017)

    Article  ADS  Google Scholar 

  46. X. D. Wu, Y. J. Wang, D. Huang, and Y. Guo, Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation, Front. Phys. 15(3), 31601 (2020)

    Article  ADS  Google Scholar 

  47. J. Mower, Z. S. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, High-dimensional quantum key distribution using dispersive optics, Phys. Rev. A 87(6), 062322 (2013)

    Article  ADS  Google Scholar 

  48. M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, and A. Forbes, Higherdimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases, Phys. Rev. A 88(3), 032305 (2013)

    Article  ADS  Google Scholar 

  49. T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, Photon-efficient quantum key distribution using time — energy entanglement with high-dimensional encoding, New J. Phys. 17(2), 022002 (2015)

    Article  ADS  Google Scholar 

  50. D. Bunandar, Z. S. Zhang, J. H. Shapiro, and D. R. Englund, Practical high-dimensional quantum key distribution with decoy states, Phys. Rev. A 91(2), 022336 (2015)

    Article  ADS  Google Scholar 

  51. S. Wang, Z. Q. Yin, W. Chen, D. Y. He, X. T. Song, H. W. Li, L. J. Zhang, Z. Zhou, G. C. Guo, and Z. F. Han, Experimental demonstration of a quantum key distribution without signal disturbance monitoring, Nat. Photonics 9(12), 832 (2015)

    Article  ADS  Google Scholar 

  52. H. Z. Bao, W. S. Bao, Y. Wang, R. K. Chen, and H. W. Li, Detector-decoy high-dimensional quantum key distribution, Opt. Express 24(19), 22159 (2016)

    Article  ADS  Google Scholar 

  53. H. Chau, C. Wong, Q. Wang, and T. Huang, Qudit-based measurement-device-independent quantum key distribution using linear optics, arXiv: 1608.08329 (2016)

  54. F. T. Tabesh, S. Salimi, and A. S. Khorashad, Witness for initial correlations among environments, Phys. Rev. A 95(5), 052323 (2017)

    Article  ADS  Google Scholar 

  55. G. Cañas, N. Vera, J. Cariñe, P. González, J. Cardenas, P. W. R. Connolly, A. Przysiezna, E. S. Gomez, M. Figueroa, G. Vallone, P. Villoresi, T. F. da Silva, G. B. Xavier, and G. Lima, High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers, Phys. Rev. A 96(2), 022317 (2017)

    Article  ADS  Google Scholar 

  56. L. Dellantonio, A. S. Sorensen, and D. Bacco, Highdimensional measurement-device-independent quantum key distribution on two-dimensional subspaces, Phys. Rev. A 98(6), 062301 (2018)

    Article  ADS  Google Scholar 

  57. G. I. Struchalin, E. V. Kovlakov, S. S. Straupe, and S. P. Kulik, Adaptive quantum tomography of highdimensional bipartite systems, Phys. Rev. A 98(3), 032330 (2018)

    Article  ADS  Google Scholar 

  58. S. Wang, Z. Q. Yin, H. F. Chau, W. Chen, C. Wang, G. C. Guo, and Z. F. Han, Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme, Quan. Sci. Technol. 3(2), 025006 (2018)

    Article  ADS  Google Scholar 

  59. F. M. Wang, P. Zeng, J. P. Zhao, B. Braverman, Y. Zhou, M. Mirhosseini, X. Wang, H. Gao, F. Li, R. W. Boyd, and P. Zhang, High-dimensional quantum key distribution based on mutually partially unbiased bases, Phys. Rev. A 101(3), 032340 (2020)

    Article  ADS  Google Scholar 

  60. F. X. Wang, W. Chen, Z. Q. Yin, S. Wang, G. C. Guo, and Z. F. Han, Characterizing high-quality highdimensional quantum key distribution by state mapping between different degrees of freedom, Phys. Rev. A 11, 024070 (2019)

    Article  Google Scholar 

  61. J. Chapman, C. Lim, and P. Kwiat, Hyperentangled time-bin and polarization quantum key distribution, arXiv: 1908.09018 (2019)

  62. Z. X. Cui, W. Zhong, L. Zhou, and Y. B. Sheng, Measurement-device-independent quantum key distribution with hyper-encoding, Sci. China Phys. Mech. Astron. 62(11), 110311 (2019)

    Article  ADS  Google Scholar 

  63. X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)

    Article  ADS  Google Scholar 

  64. X. M. Hu, Y. Guo, B. H. Liu, Y. F. Huang, C. F. Li, and G. C. Guo, Beating the channel capacity limit for superdense coding with entangled ququarts, Sci. Adv. 4(7), eaat9304 (2018)

    Article  ADS  Google Scholar 

  65. F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states, Sci. China Phys. Mech. Astron. 60(12), 120313 (2017)

    Article  ADS  Google Scholar 

  66. S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Three-step three-party quantum secure direct communication, Sci. China Phys. Mech. Astron. 61(9), 90312 (2018)

    Article  ADS  Google Scholar 

  67. L. Y. Li, T. J. Wang, and C. Wang, The analysis of high-capacity quantum secure direct communication using polarization and orbital angular momentum of photons, Mod. Phys. Lett. B 34(02), 2050017 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  68. G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, Hyper-entanglement of two photons in three degrees of freedom, Phys. Rev. A 79(3), 030301 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  69. Q. Liu, G. Y. Wang, Q. Ai, M. Zhang, and F. G. Deng, Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlin-earity, Sci. Rep. 6(1), 22016 (2016)

    Article  ADS  Google Scholar 

  70. H. Inamori, Security of practical time-reversed EPR quantum key distribution, Algorithmica 34(4), 340 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  71. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys. 79(1), 135 (2007)

    Article  ADS  Google Scholar 

  72. Y. B. Wei, W. Q. Liu, and N. Y. Chen, Implementing two-photon three-degree-of-freedom hyper-parallel controlled phase flip gate through cavity-assisted interactions, Ann. Phys. 532(4), 1900578 (2020)

    Article  MathSciNet  Google Scholar 

  73. C. Zhu and G. Huang, Giant Kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures, Opt. Express 19(23), 23364 (2011)

    Article  ADS  Google Scholar 

  74. I. C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, L. Tornberg, S. R. Sathyamoorthy, G. Johansson, P. Delsing, and C. M. Wilson, Giant cross-Kerr effect for propagating microwaves induced by an artificial atom, Phys. Rev. Lett. 111(5), 053601 (2013)

    Article  ADS  Google Scholar 

  75. K. M. Beck, M. Hosseini, Y. H. Duan, and V. Vuletic, Large conditional single-photon cross-phase modulation, Proc. Natl. Acad. Sci. USA 113(35), 9740 (2016)

    Article  ADS  Google Scholar 

  76. D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, Optical π phase shift created with a single-photon pulse, Sci. Adv. 2(4), e1600036 (2016)

    Article  ADS  Google Scholar 

  77. J. Sinclair, D. Angulo, N. Lupu-Gladstein, K. Bonsma-Fisher, and A. M. Steinberg, Observation of a large, resonant, cross-Kerr nonlinearity in a free-space Rydberg medium, arXiv: 1906.05151 (2019)

  78. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities, Opt. Express 20(22), 24664 (2012)

    Article  ADS  Google Scholar 

  79. T. J. Wang, Y. Lu, and G. L. Long, Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities, Phys. Rev. A 86(4), 042337 (2012)

    Article  ADS  Google Scholar 

  80. G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities, Opt. Express 24(25), 28444 (2016)

    Article  ADS  Google Scholar 

  81. Q. Liu and M. Zhang, Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators, Phys. Rev. A 91(6), 062321 (2015)

    Article  ADS  Google Scholar 

  82. T. J. Wang and C. Wang, Complete hyperentangled-Bell state analysis for photonic qubits assisted by a three-level A-type system, Sci. Rep. 6(1), 19497 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11974189 and 12005106, the Postgraduate Research & Practice Innovation Program of Jiangsu Province under Grant No. SJCX19-0241, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, YF., Zhou, L., Zhong, W. et al. Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys. 16, 11501 (2021). https://doi.org/10.1007/s11467-020-1005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-1005-1

Keywords

Navigation