Skip to main content
Log in

Single-step multipartite entangled states generation from coupled circuit cavities

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Green–Horne–Zeilinger states are a typical type of multipartite entangled states, which plays a central role in quantum information processing. For the generation of multipartite entangled states, the singlestep method is more preferable as the needed time will not increase with the increasing of the qubit number. However, this scenario has a strict requirement that all two-qubit interaction strengths should be the same, or the generated state will be of low quality. Here, we propose a scheme for generating multipartite entangled states of superconducting qubits, from a coupled circuit cavities scenario, where we rigorously achieve the requirement via adding an extra z-direction ac classical field for each qubit, leading the individual qubit-cavity coupling strength to be tunable in a wide range, and thus can be tuned to the same value. Meanwhile, in order to obtain our wanted multi-qubits interaction, xdirection ac classical field for each qubit is also introduced. By selecting the appropriate parameters, we numerically shown that high-fidelity multi-qubit GHZ states can be generated. In addition, we also show that the coupled cavities scenario is better than a single cavity case. Therefore, our proposal represents a promising alternative for multipartite entangled states generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  2. R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86(22), 5188 (2001)

    Article  ADS  Google Scholar 

  3. M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Lloyd, Universal quantum simulators, Science 273(5278), 1073 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. J. Leggett, Realism and the physical world, Rep. Prog. Phys. 71(2), 022001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. P. Zoller, T. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J. I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassl, S. Haroche, A. Imamoglu, A. Karlson, J. Kempe, L. Kouwenhoven, S. Kröll, G. Leuchs, M. Lewenstein, D. Loss, N. Lütkenhaus, S. Massar, J. E. Mooij, M. B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, and A. Zeilinger, Quantum information processing and communication, Eur. Phys. J. D 36(2), 203 (2005)

    Article  ADS  Google Scholar 

  7. D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, Bells theorem without inequalities, Am. J. Phys. 58(12), 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto, A. N. Cleland, and J. M. Martinis, Generation of three-qubit entangled states using superconducting phase qubits, Nature 467(7315), 570 (2010)

    Article  ADS  Google Scholar 

  9. C. P. Yang, Q. P. Su, and F. Nori, Entanglement generation and quantum information transfer between spatially-separated qubits in different cavities, New J. Phys. 15(11), 115003 (2013)

    Article  ADS  Google Scholar 

  10. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508(7497), 500 (2014)

    Article  ADS  Google Scholar 

  11. S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, Scheme for entanglement generation in an atom-cavity system via dissipation, Phys. Rev. A 90(5), 054302 (2014)

    Article  ADS  Google Scholar 

  12. S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, Simplified scheme for entanglement preparation with Rydberg pumping via dissipation, Phys. Rev. A 92(2), 022328 (2015)

    Article  ADS  Google Scholar 

  13. H. Paik, A. Mezzacapo, M. Sandberg, D. T. McClure, B. Abdo, A. D. Córcoles, O. Dial, D. F. Bogorin, B. L. T. Plourde, M. Steffen, A. W. Cross, J. M. Gambetta, and J. M. Chow, Experimental demonstration of a resonatorinduced phase gate in a multiqubit circuit-QED system, Phys. Rev. Lett. 117(25), 250502 (2016)

    Article  ADS  Google Scholar 

  14. C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)

    Article  ADS  Google Scholar 

  15. L. Dong, Y. F. Lin, Q. Y. Li, H. K. Dong, X. M. Xiu, and Y. J. Gao, Generation of three-photon polarization-entangled decoherence-free states, Ann. Phys. 371, 287 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. X. Dong, W. Zhang, Z. B. Hou, Y. C. Yu, S. Shi, D. S. Ding, and B. S. Shi, Experimental realization of narrowband four-photon Greenberger–Horne–Zeilinger state in a single cold atomic ensemble, Opt. Lett. 42(22), 4691 (2017)

    Article  ADS  Google Scholar 

  17. X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, Groundstate blockade of Rydberg atoms and application in entanglement generation, Phys. Rev. A 96(1), 012328 (2017)

    Article  ADS  Google Scholar 

  18. R. Y. Yan, Z. B. Feng, C. L. Zhang, M. Li, X. J. Lu, and Y. Q. Zhou, Fast generations of entangled states between a transmon qubit and microwave photons via shortcuts to adiabaticity, Laser Phys. Lett. 15(11), 115205 (2018)

    Article  ADS  Google Scholar 

  19. C. P. Yang, and Z. F. Zheng, Deterministic generation of Greenberger-Horne-Zeilinger entangled states of cat-state qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)

    Article  ADS  Google Scholar 

  20. X. L. Wang, L. K. Chen, W. Li, H. L. Huang, C. Liu, C. Chen, Y. H. Luo, Z. E. Su, D. Wu, Z. D. Li, H. Lu, Y. Hu, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, Y. A. Chen, C. Y. Lu, and J. W. Pan, Experimental ten-photon entanglement, Phys. Rev. Lett. 117(21), 210502 (2016)

    Article  ADS  Google Scholar 

  21. Z. Jin, S. L. Su, A. D. Zhu, H. F. Wang, and S. Zhang, Engineering multipartite steady entanglement of distant atoms via dissipation, Front. Phys. 13(5), 134209 (2018)

    Article  Google Scholar 

  22. K. Mølmer and A. Sørensen, Multiparticle entanglement of hot trapped ions, Phys. Rev. Lett. 82(9), 1835 (1999)

    Article  ADS  Google Scholar 

  23. S. B. Zheng, One-step synthesis of multiatom Greenberger-Horne-Zeilinger states, Phys. Rev. Lett. 87(23), 230404 (2001)

    Article  ADS  Google Scholar 

  24. F. Plastina, R. Fazio, and G. Massimo Palma, Macroscopic entanglement in Josephson nanocircuits, Phys. Rev. B 64(11), 113306 (2001)

    Article  ADS  Google Scholar 

  25. S. B. Zheng, Quantum-information processing and multiatom-entanglement engineering with a thermal cavity, Phys. Rev. A 66(6), 060303 (2002)

    Article  ADS  Google Scholar 

  26. D. I. Tsomoko, S. Ashhab, and F. Nori, Fully connected net-work of superconducting qubits in a cavity, New J. Phys. 10(11), 113020 (2008)

    Article  ADS  Google Scholar 

  27. A. Galiautdinov and J. M. Martinis, Maximally entangling tripartite protocols for Josephson phase qubits, Phys. Rev. A 78, 010305(R) (2008)

    Article  ADS  Google Scholar 

  28. J. Zhang, Y. X. Liu, C. W. Li, T. J. Tarn, and F. Nori, Generating stationary entangled states in superconducting qubits, Phys. Rev. A 79(5), 052308 (2009)

    Article  ADS  Google Scholar 

  29. C. L. Hutchison, J. M. Gambetta, A. Blais, and F. K. Wilhelm, Quantum trajectory equation for multiple qubits in circuit QED: Generating entanglement by measurement, Can. J. Phys. 87(3), 225 (2009)

    Article  ADS  Google Scholar 

  30. Y. D. Wang, S. Chesi, D. Loss, and C. Bruder, One-step multiqubit Greenberger–Horne–Zeilinger state generation in a circuit QED system, Phys. Rev. B 81(10), 104524 (2010)

    Article  ADS  Google Scholar 

  31. S. Aldana, Y. D. Wang, and C. Bruder, Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus, Phys. Rev. B 84(13), 134519 (2011)

    Article  ADS  Google Scholar 

  32. T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. Hansel, M. Hennrich, and R. Blatt, 14-qubit entanglement: Creation and coherence, Phys. Rev. Lett. 106(13), 130506 (2011)

    Article  ADS  Google Scholar 

  33. Y. P. Zhong, D. Xu, P. Wang, C. Song, Q. J. Guo, W. X. Liu, K. Xu, B. X. Xia, C. Y. Lu, S. Han, J. W. Pan, and H. Wang, Emulating anyonic fractional statistical behavior in a superconducting quantum circuit, Phys. Rev. Lett. 117(11), 110501 (2016)

    Article  ADS  Google Scholar 

  34. C. Song, K. Xu, W. Liu, C. Yang, S. B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y. A. Chen, C. Y. Lu, S. Han, and J. W. Pan, 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett. 119(18), 180511 (2017)

    Article  ADS  Google Scholar 

  35. Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)

    Article  Google Scholar 

  36. J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)

    Article  ADS  Google Scholar 

  37. M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)

    Article  ADS  Google Scholar 

  38. X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. E. Solano, G. S. Agarwal, and H. Walther, Strongdriving- assisted multipartite entanglement in cavity QED, Phys. Rev. Lett. 90(2), 027903 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11874156), the Key R&D Program of Guangdong Province (Grant No. 2018B0303326001), and the National Key R&D Program of China (Grant No. 2016 YFA0301803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Yuan Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, XT., Xue, ZY. Single-step multipartite entangled states generation from coupled circuit cavities. Front. Phys. 14, 31602 (2019). https://doi.org/10.1007/s11467-019-0888-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0888-1

Keywords

Navigation