Skip to main content
Log in

Steady-state property and dynamics in graphene-nanoribbon-array lasers

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this work, we present a schematic configuration and device model for a graphene-nanoribbon (GNR)-array-based nanolaser, which consists of a three-variable rate equations that takes into account carrier capture and Pauli blocking in semiconductor GNR-array lasers to analyze the steady-state properties and dynamics in terms of the role of the capture rate and the gain coefficient in GNR array nanolasers. Furthermore, our GNR-array nanolaser device model can be determined as two distinct two-variable reductions of the rate equations in the limit of large capture rates, depending on their relative values. The first case leads to the rate equations for quantum well lasers, exhibiting relaxation oscillations dynamics. The second case corresponds to GNRs nearly saturated by the carriers and is characterized by the absence of relaxation oscillations. Our results here demonstrated that GNR-array as gain material embedded into a high finesse microcavity can serve as an ultralow lasing threshold nanolaser with promising applications ranging widely from optical fiber communication with increasing data processing speed to digital optical recording and biology spectroscopy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, New York: Wiley, 1999

    Google Scholar 

  2. M. Kuntz, N. N. Ledentsov, D. Bimberg, A. R. Kovsh, V. M. Ustinov, A. E. Zhukov, and Y. M. Shernyakov, Appl. Phys. Lett., 2002, 81(20): 3846

    Article  ADS  Google Scholar 

  3. D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, Opt. Lett., 2004, 29: 1074

    Google Scholar 

  4. S. Melnik, G. Huyet, and A. V. Uskov, Opt. Express, 2006, 14(7): 2950

    Article  ADS  Google Scholar 

  5. T. Erneux, E. A. Viktorov, and P. Mandel, Phys. Rev. A, 2007, 76(2): 023819

    Article  ADS  Google Scholar 

  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 2004, 306(5696): 666

    Article  ADS  Google Scholar 

  7. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nat. Mater., 2009, 8(3): 203

    Article  ADS  Google Scholar 

  8. C. Stampfer, S. Fringes, J. Guttinger, F. Molitor, C. Volk, B. Terres, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Droscher, T. Ihn, and K. Ensslin, Front. Phys., 2011, 6(3): 271

    Article  Google Scholar 

  9. Z. Chen, Y. M. Lin, M. J. Rooks, and P. Avouris, Physica E, 2007, 40(2): 228

    Article  ADS  Google Scholar 

  10. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett., 2007, 98(20): 206805

    Article  ADS  Google Scholar 

  11. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon., 2010, 4(9): 611

    Article  ADS  Google Scholar 

  12. G. C. Shan, X. H. Zhao, and W. Huang, J. Nanoelectron. Optoelectron., 2011, 6(2): 138

    Article  Google Scholar 

  13. L. Brey and H. A. Fertig, Phys. Rev. B, 2006, 73(23): 235411

    Article  ADS  Google Scholar 

  14. L. Yang, C. H. Park, Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett., 2007, 99(18): 186801

    Article  ADS  Google Scholar 

  15. L. Yang, M. L. Cohen, and S. G. Louie, Nano Lett., 2007, 7(10): 3112

    Article  ADS  Google Scholar 

  16. J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccioni, J. Opt. Soc. Am. B, 1985, 2(1): 173

    Article  ADS  Google Scholar 

  17. A. Fiore and A. Markus, IEEE J. Quantum Electron., 2007, 43(4): 287

    Article  ADS  Google Scholar 

  18. J. V. Uspensky, Theory of Equations, New York: McGraw-Hill, 1948

    Google Scholar 

  19. V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, and V. Ya. Aleshkin, J. Appl. Phys., 2009, 106(8): 084507

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Hai Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, XH., Shan, GC. & Shek, CH. Steady-state property and dynamics in graphene-nanoribbon-array lasers. Front. Phys. 7, 527–532 (2012). https://doi.org/10.1007/s11467-012-0252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-012-0252-1

Keywords

Navigation