Skip to main content
Log in

Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Bone grinding is an essential and vital procedure in most surgical operations. Currently, the insufficient cooling capacity of dry grinding, poor visibility of drip irrigation surgery area, and large grinding force leading to high grinding temperature are the technical bottlenecks of micro-grinding. A new micro-grinding process called ultrasonic vibration-assisted nanoparticle jet mist cooling (U-NJMC) is innovatively proposed to solve the technical problem. It combines the advantages of ultrasonic vibration (UV) and nanoparticle jet mist cooling (NJMC). Notwithstanding, the combined effect of multi parameter collaborative of U-NJMC on cooling has not been investigated. The grinding force, friction coefficient, specific grinding energy, and grinding temperature under dry, drip irrigation, UV, minimum quantity lubrication (MQL), NJMC, and U-NJMC micro-grinding were compared and analyzed. Results showed that the minimum normal grinding force and tangential grinding force of U-NJMC micro-grinding were 1.39 and 0.32 N, which were 75.1% and 82.9% less than those in dry grinding, respectively. The minimum friction coefficient and specific grinding energy were achieved using U-NJMC. Compared with dry, drip, UV, MQL, and NJMC grinding, the friction coefficient of U-NJMC was decreased by 31.3%, 17.0%, 19.0%, 9.8%, and 12.5%, respectively, and the specific grinding energy was decreased by 83.0%, 72.7%, 77.8%, 52.3%, and 64.7%, respectively. Compared with UV or NJMC alone, the grinding temperature of U-NJMC was decreased by 33.5% and 10.0%, respectively. These results showed that U-NJMC provides a novel approach for clinical surgical micro-grinding of biological bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

2D:

Two-dimensional

CNT:

Carbon nanotube

MQL:

Minimum quantity lubrication

NJMC:

Nanoparticle jet mist cooling

PEG400:

Polyethylene glycol 400

U-NJMC:

Ultrasonic vibration-assisted nanoparticle jet mist cooling

UV:

Ultrasonic vibration

a g :

Thickness of the undeformed chip

a p :

Grinding depth

A :

Axial vibration amplitude

b w :

Micro-grinding workpiece width

C :

Effective number of abrasive grains per unit area

D :

Injection distance

e s :

Specific grinding energy

f :

Frequency

F a :

Axial grinding force

F n :

Normal grinding force

F t :

Tangential grinding force

l 1 :

Contact arc length between the grinding rod and the workpiece material in normal grinding

l 2 :

Contact arc length between the grinding rod and the workpiece material in UV-assisted micro-grinding

n :

Spindle speed

P :

Air pressure

Q :

Liquid flow rate

r :

Radius of the abrasive

T :

Grinding temperature

v s :

Grinding tool linear speed

v w :

Feeding speed

α :

Nozzle angle

μ :

Coefficient of friction

μ dry, μ drip, μ MQL, μ NJMC, μ UV, and μ U-NJMC :

Friction coefficients of dry, drip, MQL, NJMC, UV, and U-NJMC grinding, respectively

θ :

Average cone half angle of the abrasive grains

φ :

Initial phase of ultrasonic vibration

References

  1. Liao Z R, Axinte D A, Gao D. A novel cutting tool design to avoid surface damage in bone machining. International Journal of Machine Tools and Manufacture, 2017, 116: 52–59

    Article  Google Scholar 

  2. Robles-Linares J A, Axinte D, Liao Z R, Gameros A. Machining-induced thermal damage in cortical bone: necrosis and micro-mechanical integrity. Materials & Design, 2021, 197: 109215

    Article  Google Scholar 

  3. Yang M, Li C H, Zhang Y B, Jia D Z, Zhang X P, Li R Z. A new model for predicting neurosurgery skull bone grinding temperature field. Journal of Mechanical Engineering, 2018, 54(23): 215–222 (in Chinese)

    Article  Google Scholar 

  4. Conward M, Samuel J. Machining characteristics of the haversian and plexiform components of bovine cortical bone. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60: 525–534

    Article  Google Scholar 

  5. Liao Z R, Axinte D, Gao D. On modelling of cutting force and temperature in bone milling. Journal of Materials Processing Technology, 2019, 266: 627–638

    Article  Google Scholar 

  6. Li W, Chen Q D, Ren Y H, Jiao Y, Ibrahim A M M. Hybrid micro-grinding process for manufacturing meso/micro-structures on monocrystalline silicon. Materials and Manufacturing Processes, 2021, 36(1): 17–26

    Article  Google Scholar 

  7. Yang M, Li C H, Luo L, Li R Z, Long Y Z. Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling. International Communications in Heat and Mass Transfer, 2021, 125: 105317

    Article  Google Scholar 

  8. Gao S, Huang H. Recent advances in micro- and nano-machining technologies. Frontiers of Mechanical Engineering, 2017, 12(1): 18–32

    Article  MathSciNet  Google Scholar 

  9. Zhang Y, Robles-Linares J A, Chen L, Liao Z R, Shih A J, Wang C Y. Advances in machining of hard tissues—from material removal mechanism to tooling solutions. International Journal of Machine Tools and Manufacture, 2022, 172: 103838

    Article  Google Scholar 

  10. Chen J J, Yuan D D, Jiang H F, Zhang L Y, Yang Y, Fu Y C, Qian N, Jiang F. Thermal management of bone drilling based on rotating heat pipe. Energies, 2022, 15(1): 35

    Article  Google Scholar 

  11. Yang M, Li C H, Said Z, Zhang Y B, Li R Z, Debnath S, Ali H M, Gao T, Long Y Z. Semiempirical heat flux model of hard-brittle bone material in ductile microgrinding. Journal of Manufacturing Processes, 2021, 71: 501–514

    Article  Google Scholar 

  12. Mizutani T, Satake U, Enomoto T. A study on a cooling method for bone grinding using diamond bur for minimally invasive surgeries. Precision Engineering, 2021, 70: 155–163

    Article  Google Scholar 

  13. Shu L M, Li S H, Terashima M, Bai W, Hanami T, Hasegawa R, Sugita N. A novel self-centring drill bit design for low-trauma bone drilling. International Journal of Machine Tools and Manufacture, 2020, 154: 103568

    Article  Google Scholar 

  14. Gholampour S, Droessler J, Frim D. The role of operating variables in improving the performance of skull base grinding. Neurosurgical Review, 2022, 45(3): 2431–2440

    Article  Google Scholar 

  15. Axinte D, Guo Y B, Liao Z R, Shih A J, M’Saoubi R, Sugita N. Machining of biocompatible materials—recent advances. CIRP Annals, 2019, 68(2): 629–652

    Article  Google Scholar 

  16. Li S H, Shu L M, Kizaki T, Bai W, Terashima M, Sugita N. Cortical bone drilling: a time series experimental analysis of thermal characteristics. Journal of Manufacturing Processes, 2021, 64: 606–619

    Article  Google Scholar 

  17. Kondo S, Okada Y, Iseki H, Hori T, Takakura K, Kobayashi A, Nagata H. Thermological study of drilling bone tissue with a high-speed drill. Neurosurgery, 2000, 46(5): 1162–1168

    Article  Google Scholar 

  18. Kitahama Y, Shizuka H, Kimura R, Suzuki T, Ohara Y, Miyake H, Sakai K. Fluid lubrication and cooling effects in diamond grinding of human iliac bone. Medicina, 2021, 57(1): 71–80

    Article  Google Scholar 

  19. Kong D Y, Lin G M, Shi Y B, Gu Z L, Gao Y, Feng Y H. Performance of heterotopic bone elicited with bone morphogenic protein-2 microspheres as a bone repair material. Materials & Design, 2020, 191: 108657

    Article  Google Scholar 

  20. Novitskaya E, Chen P Y, Lee S, Castro-Ceseña A, Hirata G, Lubarda V A, McKittrick J. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomaterialia, 2011, 7(8): 3170–3177

    Article  Google Scholar 

  21. Zhang X P, Li C H, Zhang Y B, Wang Y G, Li B K, Yang M, Guo S M, Liu G T, Zhang N Q. Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation. Precision Engineering, 2017, 47: 532–545

    Article  Google Scholar 

  22. Li C H, Li J Y, Wang S, Zhang Q. Modeling and numerical simulation of the grinding temperature field with nanoparticle jet of MQL. Advances in Mechanical Engineering, 2013, 5: 986984

    Article  Google Scholar 

  23. Jia D Z, Zhang N Q, Liu B, Zhou Z M, Wang X P, Zhang Y B, Mao C, Li C H. Particle size distribution characteristics of electrostatic minimum quantity lubrication and grinding surface quality evaluation. Diamond & Abrasives Engineering, 2021, 41(3): 89–95 (in Chinese)

    Google Scholar 

  24. Cui X, Li C H, Ding W F, Chen Y, Mao C, Xu X F, Liu B, Wang D Z, Li H N, Zhang Y B, Said Z, Debnath S, Jamil M, Ali H M, Sharma S. Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application. Chinese Journal of Aeronautics, 2022, 35(11): 85–112

    Article  Google Scholar 

  25. Qu S S, Gong Y D, Yang Y Y, Sun Y, Wen X L, Qi Y. Investigating minimum quantity lubrication in unidirectional Cf/SiC composite grinding. Ceramics International, 2020, 46(3): 3582–3591

    Article  Google Scholar 

  26. Wang X M, Li C H, Zhang Y B, Said Z, Debnath S, Sharma S, Yang M, Gao T. Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. The International Journal of Advanced Manufacturing Technology, 2022, 119(1): 631–646

    Article  Google Scholar 

  27. Gao T, Zhang Y B, Li C H, Wang Y Q, Chen Y, An Q L, Zhang S, Li H N, Cao H J, Ali H M, Zhou Z M, Sharma S. Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies. Frontiers of Mechanical Engineering, 2022, 17(2): 24

    Article  Google Scholar 

  28. Zhang Y B, Li H N, Li C H, Huang C Z, Ali H M, Xu X F, Mao C, Ding W F, Cui X, Yang M, Yu T B, Jamil M, Gupta M K, Jia D Z, Said Z. Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction, 2022, 10: 803–841

    Article  Google Scholar 

  29. Liu M Z, Li C H, Zhang Y B, An Q L, Yang M, Gao T, Mao C, Liu B, Cao H J, Xu X F, Said Z, Debnath S, Jamil M, Ali H M, Sharma S. Cryogenic minimum quantity lubrication machining: from mechanism to application. Frontiers of Mechanical Engineering, 2021, 16(4): 649–697

    Article  Google Scholar 

  30. Qu S S, Yao P, Gong Y D, Chu D K, Yang Y Y, Li C W, Wang Z L, Zhang X P, Hou Y. Environmentally friendly grinding of C/SiCs using carbon nanofluid minimum quantity lubrication technology. Journal of Cleaner Production, 2022, 366: 132898

    Article  Google Scholar 

  31. Zhang Y B, Li C H, Jia D Z, Li B K, Wang Y G, Yang M, Hou Y L, Zhang X W. Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. Journal of Materials Processing Technology, 2016, 232: 100–115

    Article  Google Scholar 

  32. Yang M, Li C H, Zhang Y B, Jia D Z, Zhang X P, Hou Y L, Li R Z, Wang J. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. International Journal of Machine Tools and Manufacture, 2017, 122: 55–65

    Article  Google Scholar 

  33. Lin Z T, Wu Y B, Bi Y G. Rapid synthesis of SiO2 by ultrasonic-assisted Stober method as controlled and pH-sensitive drug delivery. Journal of Nanoparticle Research, 2018, 20(11): 304

    Article  Google Scholar 

  34. Biju V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chemical Society Reviews, 2014, 43(3): 744–764

    Article  Google Scholar 

  35. Yuan J L, Lyu B H, Hang W, Deng Q F. Review on the progress of ultra-precision machining technologies. Frontiers of Mechanical Engineering, 2017, 12(2): 158–180

    Article  Google Scholar 

  36. Cao Y, Yin J F, Ding W F, Xu J H. Alumina abrasive wheel wear in ultrasonic vibration-assisted creep-feed grinding of Inconel 718 nickel-based superalloy. Journal of Materials Processing Technology, 2021, 297: 117241

    Article  Google Scholar 

  37. Miao Q, Ding W F, Xu J H, Cao L J, Wang H C, Yin Z, Dai C W, Kuang W J. Creep feed grinding induced gradient microstructures in the superficial layer of turbine blade root of single crystal nickel-based superalloy. International Journal of Extreme Manufacturing, 2021, 3(4): 045102

    Article  Google Scholar 

  38. Yin G Q, Wang J H, Guan Y Y, Wang D, Sun Y. The prediction model and experimental research of grinding surface roughness based on AE signal. The International Journal of Advanced Manufacturing Technology, 2022, 120(9): 6693–6705

    Article  Google Scholar 

  39. Cao Y, Zhu Y J, Ding W F, Qiu Y T, Wang L F, Xu J H. Vibration coupling effects and machining behavior of ultrasonic vibration plate device for creep-feed grinding of Inconel 718 nickel-based superalloy. Chinese Journal of Aeronautics, 2022, 35(2): 332–345

    Article  Google Scholar 

  40. Kuang W J, Miao Q, Ding W F, Zhao Y J, Zhao B, Wen X B, Li S P. Fretting wear behaviour of machined layer of nickel-based superalloy produced by creep-feed profile grinding. Chinese Journal of Aeronautics, 2022, 35(10): 401–411

    Article  Google Scholar 

  41. Alam K, Ghodsi M, Al-Shabibi A, Silberschmidt V. Experimental study on the effect of point angle on force and temperature in ultrasonically assisted bone drilling. Journal of Medical and Biological Engineering, 2018, 38(2): 236–243

    Article  Google Scholar 

  42. Gupta V, Pandey P M. An in-vitro study of cutting force and torque during rotary ultrasonic bone drilling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232(9): 1549–1560

    Article  Google Scholar 

  43. Babbar A, Jain V, Gupta D. Thermogenesis mitigation using ultrasonic actuation during bone grinding: a hybrid approach using CEM43°C and Arrhenius model. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(10): 401

    Article  Google Scholar 

  44. Li K M, Hu Y M, Yang Z Y, Chen M Y. Experimental study on vibration-assisted grinding. Journal of Manufacturing Science and Engineering, 2012, 134(4): 041009

    Article  Google Scholar 

  45. Jia D Z, Li C H, Zhang Y B, Yang M, Zhang X P, Li R Z, Ji H J. Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration. The International Journal of Advanced Manufacturing Technology, 2019, 100(1): 457–473

    Article  Google Scholar 

  46. Rabiei F, Rahimi A R, Hadad M J, Saberi A. Experimental evaluation of coolant-lubricant properties of nanofluids in ultrasonic assistant MQL grinding. The International Journal of Advanced Manufacturing Technology, 2017, 93(9): 3935–3953

    Article  Google Scholar 

  47. Yan L T, Zhang Q J, Yu J Z. Effects of continuous minimum quantity lubrication with ultrasonic vibration in turning of titanium alloy. The International Journal of Advanced Manufacturing Technology, 2018, 98(1): 827–837

    Article  Google Scholar 

  48. Gao T, Zhang Y B, Li C H, Wang Y Q, An Q L, Liu B, Said Z, Sharma S. Grindability of carbon fiber reinforced polymer using CNT biological lubricant. Scientific Reports, 2021, 11(1): 22535

    Article  Google Scholar 

  49. Jiang J L, Ge P Q, Sun S F, Wang D X, Wang Y L, Yang Y. From the microscopic interaction mechanism to the grinding temperature field: an integrated modelling on the grinding process. International Journal of Machine Tools and Manufacture, 2016, 110: 27–42

    Article  Google Scholar 

  50. Sugita N, Ishii K, Sui J B, Terashima M. Multi-grooved cutting tool to reduce cutting force and temperature during bone machining. CIRP Annals, 2014, 63(1): 101–104

    Article  Google Scholar 

  51. Babbar A, Jain V, Gupta D, Agrawal D, Prakash C, Singh S, Wu L Y L, Zheng H Y, Królczyk G, Bogdan-Chudy M. Experimental analysis of wear and multi-shape burr loading during neurosurgical bone grinding. Journal of Materials Research and Technology, 2021, 12: 15–28

    Article  Google Scholar 

  52. Yang M, Li C H, Zhang Y B, Wang Y G, Li B K, Jia D Z, Hou Y L, Li R Z. Research on microscale skull grinding temperature field under different cooling conditions. Applied Thermal Engineering, 2017, 126: 525–537

    Article  Google Scholar 

  53. Zhang J H, Zhao Y, Zhang S, Tian F Q, Guo L S, Dai R Z. Study on effect of ultrasonic vibration on grinding force and surface quality in ultrasonic assisted micro end grinding of silica glass. Shock and Vibration, 2014, 2014: 418059

    Google Scholar 

  54. Qu S S, Yao P, Gong Y D, Yang Y Y, Chu D K, Zhu Q S. Modelling and grinding characteristics of unidirectional C-SiCs. Ceramics International, 2022, 48(6): 8314–8324

    Article  Google Scholar 

  55. Sun Y, Jin L Y, Gong Y D, Wen X L, Yin G Q, Wen Q, Tang B J. Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM. Journal of Manufacturing Processes, 2022, 73: 799–814

    Article  Google Scholar 

  56. Liao Z R, Axinte D A. On chip formation mechanism in orthogonal cutting of bone. International Journal of Machine Tools and Manufacture, 2016, 102: 41–55

    Article  Google Scholar 

  57. Jia D Z, Li C H, Zhang Y B, Yang M, Cao H J, Liu B, Zhou Z M. Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant. Journal of Mechanical Engineering, 2022, 58(5): 198–211

    Google Scholar 

  58. Ding W F, Xu J H, Chen Z Z, Su H H, Fu Y C. Grindability and surface integrity of cast nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels. Chinese Journal of Aeronautics, 2010, 23(4): 501–510

    Article  Google Scholar 

  59. Shu L M, Sugita N. Analysis of fracture, force, and temperature in orthogonal elliptical vibration-assisted bone cutting. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103: 103599

    Article  Google Scholar 

  60. Brehl D E, Dow T A. Review of vibration-assisted machining. Precision Engineering, 2008, 32(3): 153–172

    Article  Google Scholar 

  61. Gu P, Zhu C M, Tao Z, Yu Y Q. A grinding force prediction model for SiCp/Al composite based on single-abrasive-grain grinding. The International Journal of Advanced Manufacturing Technology, 2020, 109: 1563–1581

    Article  Google Scholar 

  62. Zhou M, Zheng W. A model for grinding forces prediction in ultrasonic vibration assisted grinding of SiCp/Al composites. The International Journal of Advanced Manufacturing Technology, 2016, 87(9): 3211–3224

    Article  Google Scholar 

  63. McCarus S D. Physiologic mechanism of the ultrasonically activated scalpel. Journal of the American Association of Gynecologic Laparoscopists, 1996, 3(4): 601–608

    Article  Google Scholar 

  64. Wang Y, Lin B, Wang S L, Cao X Y. Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. International Journal of Machine Tools and Manufacture, 2014, 77: 66–73

    Article  Google Scholar 

  65. Ying Z Z, Shu L M, Sugita N. Experimental and finite element analysis of force and temperature in ultrasonic vibration assisted bone cutting. Annals of Biomedical Engineering, 2020, 48(4): 1281–1290

    Article  Google Scholar 

  66. Bai X F, Hou S J, Li K, Qu Y, Zhu W. Analysis of machining process and thermal conditions during vibration-assisted cortical bone drilling based on generated bone chip morphologies. Medical Engineering & Physics, 2020, 83: 73–81

    Article  Google Scholar 

  67. Xie H M, Jiang B, He J J, Xia X S, Pan F S. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribology International, 2016, 93: 63–70

    Article  Google Scholar 

Download references

Acknowledgement

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 51905289 and 51975305), the National Key R&D Program of China (Grant No. 2020YFB2010500), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2022QE159, ZR2020KE027, ZR2020ME158, and ZR2019PEE008), the China Postdoctoral Science Foundation (Grant No. 2021M701810), the Innovation Talent Supporting Program for Postdoctoral Fellows of Shandong Province, China (Grant No. SDBX2020012), and the Qingdao Postdoctoral Researchers Applied Research Project Funding, China (Grant No. A2020-072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhe Li or Shubham Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, M., Li, C. et al. Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant. Front. Mech. Eng. 18, 1 (2023). https://doi.org/10.1007/s11465-022-0717-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11465-022-0717-z

Keywords

Navigation