Skip to main content
Log in

Intelligent methods for the process parameter determination of plastic injection molding

  • Review Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang D, Danai K, Kazmer D. A knowledge-based tuning method for injection molding machines. Journal of Manufacturing Science and Engineering, 2000, 123(4): 682–691

    Article  Google Scholar 

  2. Kolodner J L. An introduction to case-based reasoning. Artificial Intelligence Review, 1992, 6(1): 3–34

    Article  Google Scholar 

  3. Mok S L, Kwong C K, Lau W S. Review of research in the determination of process parameters for plastic injection molding. Advances in Polymer Technology, 1999, 18(3): 225–236

    Article  Google Scholar 

  4. Kwong C K, Smith G F, Lau W S. Application of case based reasoning injection moulding. Journal of Materials Processing Technology, 1997, 63(1–3): 463–467

    Article  Google Scholar 

  5. Kwong C K, Smith G F. A computational system for process design of injection moulding: Combining blackboard-based expert system and case-based reasoning approach. International Journal of Advanced Manufacturing Technology, 1998, 14(4): 239–246

    Article  Google Scholar 

  6. Mok S L, Kwong C K, Lau W S. An intelligent hybrid system for initial process parameter setting of injection moulding. International Journal of Production Research, 2000, 38(17): 4565–4576

    Article  Google Scholar 

  7. Mok S L, Kwong C K. Application of artificial neural network and fuzzy logic in a case-based system for initial process parameter setting of injection molding. Journal of Intelligent Manufacturing, 2002, 13(3): 165–176

    Article  Google Scholar 

  8. Shelesh-Nezhad K, Siores E. An intelligent system for plastic injection molding process design. Journal of Materials Processing Technology, 1997, 63(1–3): 458–462

    Article  Google Scholar 

  9. Zhou H M, Zhao P, Feng W. An integrated intelligent system for injection molding process determination. Advances in Polymer Technology, 2007, 26(3): 191–205

    Article  Google Scholar 

  10. Kim S G, Suh N P. Knowledge-based synthesis system for injection molding. Robotics and Computer-Integrated Manufacturing, 1987, 3(2): 181–186

    Article  Google Scholar 

  11. Pandelidis I, Kao J F. DETECTOR: A knowledge-based system for injection molding diagnostics. Journal of Intelligent Manufacturing, 1990, 1(1): 49–58

    Article  Google Scholar 

  12. Jan T C, O’Brien K. A user-friendly, interactive expert system for the injection moulding of engineering thermoplastics. International Journal of Advanced Manufacturing Technology, 1993, 8(1): 42–51

    Article  Google Scholar 

  13. Kameoka S, Haramoto N, Sakai T. Development of an expert system for injection molding operations. Advances in Polymer Technology, 1993, 12(4): 403–418

    Article  Google Scholar 

  14. He W, Zhang Y F, Lee K S, et al. Automated process parameter resetting for injection moulding: A fuzzy-neuro approach. Journal of Intelligent Manufacturing, 1998, 9(1): 17–27

    Article  Google Scholar 

  15. He W, Zhang Y F, Lee K S, et al. Development of a fuzzy-neuro system for parameter resetting of injection molding. Journal of Manufacturing Science and Engineering, 2001, 123(1): 110–118

    Article  Google Scholar 

  16. Tan K, Yuen M. An expert system for injection molding defect correction. In: Proceedings of the 3rd International Conference, Computer Integrated Manufacturing. 1995, 11–14

    Google Scholar 

  17. Chen M Y, Tzeng H W, Chen Y C, et al. The application of fuzzy theory for the control of weld line positions in injection-molded part. ISA Transactions, 2008, 47(1): 119–126

    Article  Google Scholar 

  18. Li D Q, Zhou H M, Zhao P, et al. A real-time process optimization system for injection molding. Polymer Engineering and Science, 2009, 49(10): 2031–2040

    Article  Google Scholar 

  19. Dhaliwal J S, Benbasat I. The use and effects of knowledge-based system explanations: Theoretical foundations and a framework for empirical evaluation. Information Systems Research, 1996, 7(3): 342–362

    Article  Google Scholar 

  20. Inaba Y, Sakakibara S, Taira T, et al. Expert system for injection molding machine to support stable condition during long time production. In: Proceedings of International Conference on Artificial Intelligent in the Pacific Rim. 1991, 909–914

    Google Scholar 

  21. Liao S H. Expert system methodologies and applications—A decade review from 1995 to 2004. Expert Systems with Applications, 2005, 28(1): 93–103

    Article  MathSciNet  Google Scholar 

  22. Pardo S A. Fractional factorial designs. In: Pardo S A, ed. Empirical Modeling and Data Analysis for Engineers and Applied Scientists. Cham: Springer}, 2016, 59–93

  23. Liu T F, Zhang C L, Yang G S, et al. Central composite design-based analysis of specific leaf area and related agronomic factors in cultivars of rapeseed (Brassica napus L.). Field Crops Research, 2009, 111(1–2): 92–96

    Article  Google Scholar 

  24. Roy R K. A Primer on Taguchi Method. New York: Van Nostrand Reinhold, 1990

    MATH  Google Scholar 

  25. Helton J C, Davis F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 2003, 81(1): 23–69

    Article  Google Scholar 

  26. Fang K T, Lin D K J, Winker P, et al. Uniform design: Theory and application. Technometrics, 2000, 42(3): 237–248

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen W C, Nguyen M H, Chiu W H, et al. Optimization of the plastic injection molding process using the Taguchi method, RSM, and hybrid GA-PSO. International Journal of Advanced Manufacturing Technology, 2016, 83(9–12): 1873–1886

    Article  Google Scholar 

  28. Zhao J, Cheng G. An innovative surrogate-based searching method for reducing warpage and cycle time in injection molding. Advances in Polymer Technology, 2015, 35(3): 288–297

    Article  Google Scholar 

  29. Wang Y, Kim J, Song J I. Optimization of plastic injection molding process parameters for manufacturing a brake booster valve body. Materials & Design, 2014, 56: 313–317

    Article  Google Scholar 

  30. Jou Y T, Lin W T, Lee W C, et al. Integrating the Taguchi method and response surface methodology for process parameter optimization of the injection molding. Applied Mathematics & Information Sciences, 2014, 8(3): 1277–1285

    Article  Google Scholar 

  31. Wen T, Chen X, Yang C, et al. Optimization of processing parameters for minimizing warpage of large thin-walled parts in whole stages of injection molding. Chinese Journal of Polymer Science, 2014, 32(11): 1535–1543

    Article  Google Scholar 

  32. Chen W C, Liou P H, Chou S C. An integrated parameter optimization system for MIMO plastic injection molding using soft computing. International Journal of Advanced Manufacturing Technology, 2014, 73(9–12): 1465–1474

    Article  Google Scholar 

  33. Chen W C, Kurniawan D. Process parameters optimization for multiple quality characteristics in plastic injection molding using Taguchi method, BPNN, GA, and hybrid PSO-GA. International Journal of Precision Engineering and Manufacturing, 2014, 15(8): 1583–1593

    Article  Google Scholar 

  34. Azaman M D, Sapuan S M, Sulaiman S, et al. Optimization and numerical simulation analysis for molded thin-walled parts fabricated using wood-filled polypropylene composites via plastic injection molding. Polymer Engineering & Science, 2015, 5(5): 1082–1095

    Article  Google Scholar 

  35. Chen W C, Wang L Y, Huang C C, et al. Parameter optimization of the injection molding process for a LED lighting lens using soft computing. Advanced Materials Research, 2013, 690–693: 2344–2351

    Article  Google Scholar 

  36. Tzeng C J, Yang Y K, Lin Y H, et al. A study of optimization of injection molding process parameters for SGF and PTFE reinforced PC composites using neural network and response surface methodology. International Journal of Advanced Manufacturing Technology, 2012, 63(5–8): 691–704

    Article  Google Scholar 

  37. Lu N, Gong G, Yang Y, et al. Multi-objective process parameter optimization for energy saving in injection molding process. Journal of Zhejiang University. Science A, 2012, 13(5): 382–394

    Article  Google Scholar 

  38. Yin F, Mao H, Hua L. A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parameters. Materials & Design, 2011, 32(6): 3457–3464

    Article  Google Scholar 

  39. Mehat N M, Kamaruddin S. Multi-response optimization of injection moulding processing parameters using the Taguchi method. Polymer-Plastics Technology and Engineering, 2011, 50 (15): 1519–1526

    Article  Google Scholar 

  40. Chen WL, Huang C Y, Hung CW. Optimization of plastic injection molding process by dual response surface method with non-linear programming. Engineering Computations, 2010, 27(8): 951–966

    Article  MATH  Google Scholar 

  41. Ting P H, Hsu C I, Hwang J R. Optimization of the wear properties of polyoxymethylene components under injection process conditions. Polymer-Plastics Technology and Engineering, 2010, 49(9): 892–899

    Article  Google Scholar 

  42. Altan M. Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods. Materials & Design, 2010, 31 (1): 599–604

    Article  Google Scholar 

  43. Chen W C, Fu G L, Tai P H, et al. Process parameter optimization for MIMO plastic injection molding via soft computing. Expert Systems with Applications, 2009, 36(2): 1114–1122

    Article  Google Scholar 

  44. Chen C P, Chuang M T, Hsiao Y H, et al. Simulation and experimental study in determining injection molding process parameters for thin-shell plastic parts via design of experiments analysis. Expert Systems with Applications, 2009, 36(7): 10752–10759

    Article  Google Scholar 

  45. Chen W C, Wang M W, Chen C T, et al. An integrated parameter optimization system for MISO plastic injection molding. International Journal of Advanced Manufacturing Technology, 2009, 44(5–6): 501–511

    Article  Google Scholar 

  46. Deng W J, Chen C T, Sun C H, et al. An effective approach for process parameter optimization in injection molding of plastic housing components. Polymer-Plastics Technology and Engineering, 2008, 47(9): 910–919

    Article  Google Scholar 

  47. Cheng W S, Chen C S, Chen S C, et al. Investigation of the effects of injection molding processing parameters on conductive polymeric composites for electromagnetic interference shielding effectiveness. Polymer-Plastics Technology and Engineering, 2009, 48 (2): 216–220

    Article  Google Scholar 

  48. Tsai K M, Hsieh C Y, Lo W C. A study of the effects of process parameters for injection molding on surface quality of optical lenses. Journal of Materials Processing Technology, 2009, 209(7): 3469–3477

    Article  Google Scholar 

  49. Yang Y K, Shie J R, Liao H T, et al. A study of Taguchi and design of experiments method in injection molding process for polypropylene components. Journal of Reinforced Plastics and Composites, 2008, 27(8): 819–834

    Article  Google Scholar 

  50. Huang M S, Lin T Y. An innovative regression model-based searching method for setting the robust injection molding parameters. Journal of Materials Processing Technology, 2008, 198(1–3): 436–444

    Article  Google Scholar 

  51. Shie J R. Optimization of injection molding process for contour distortions of polypropylene composite components by a radial basis neural network. International Journal of Advanced Manufacturing Technology, 2008, 36(11–12): 1091–1103

    Article  MathSciNet  Google Scholar 

  52. Chen W C, Fu G L, Tai P H, et al. ANN and GA-based process parameter optimization for MIMO plastic injection molding. In: Proceedings of International Conference on Machine Learning and Cybernetics. Hong Kong: IEEE, 2007, 1909–1917

    Google Scholar 

  53. Wang L, Li Q, Shen C, et al. Effects of process parameters and twoway interactions on sink mark depth of injection molded parts by using the design of experiment method. Polymer-Plastics Technology and Engineering, 2007, 47(1): 30–35

    Article  Google Scholar 

  54. Song M C, Liu Z, Wang M J, et al. Research on effects of injection process parameters on the molding process for ultra-thin wall plastic parts. Journal of Materials Processing Technology, 2007, 187–188: 668–671

    Article  Google Scholar 

  55. Oktem H, Erzurumlu T, Uzman I. Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Materials & Design, 2007, 28(4): 1271–1278

    Article  Google Scholar 

  56. Kuo C F, Su T L. Optimization of injection molding processing parameters for LCD light-guide plates. Journal of Materials Engineering and Performance, 2007, 16(5): 539–548

    Article  Google Scholar 

  57. Kemal Karasu M, Cakmakci M, Cakiroglu M B, et al. Improvement of changeover times via Taguchi empowered SMED/case study on injection molding production. Measurement, 2014, 47: 741–748

    Article  Google Scholar 

  58. Liu F, Zeng S Q, Zhou H M, et al. A study on the distinguishing responses of shrinkage and warpage to processing conditions in injection molding. Journal of Applied Polymer Science, 2012, 125 (1): 731–744

    Article  Google Scholar 

  59. AlKaabneh F A, Barghash M, Mishael I. A combined analytical hierarchical process (AHP) and Taguchi experimental design (TED) for plastic injection molding process settings. International Journal of Advanced Manufacturing Technology, 2012, 66(5): 679–694

    Google Scholar 

  60. Kitayama S, Natsume S. Multi-objective optimization of volume shrinkage and clamping force for plastic injection molding via sequential approximate optimization. Simulation Modelling Practice and Theory, 2014, 48: 35–44

    Article  Google Scholar 

  61. Shi H Z, Xie S M, Wang X C. A warpage optimization method for injection molding using artificial neural network with parametric sampling evaluation strategy. International Journal of Advanced Manufacturing Technology, 2013, 65(1–4): 343–353

    Article  Google Scholar 

  62. Xia W, Luo B, Liao X. An enhanced optimization approach based on Gaussian process surrogate model for process control in injection molding. International Journal of Advanced Manufacturing Technology, 2011, 56(9–12): 929–942

    Article  Google Scholar 

  63. Shi H Z, Gao Y H, Wang X C. Optimization of injection molding process parameters using integrated artificial neural network model and expected improvement function method. International Journal of Advanced Manufacturing Technology, 2010, 48(9–12): 955–962

    Article  Google Scholar 

  64. Chen W, Zhou X, Wang H, et al. Multi-objective optimal approach for injection molding based on surrogate model and particle swarm optimization algorithm. Journal of Shanghai Jiaotong University (Science), 2010, 15(1): 88–93

    Article  Google Scholar 

  65. Liao X, Long F. Gaussian process modeling of process optimization and parameter correlation for injection molding. Journal of Marine Science and Engineering, 2010, 4(10): 90–97

    Google Scholar 

  66. Li C, Wang F L, Chang Y Q, et al. A modified global optimization method based on surrogate model and its application in packing profile optimization of injection molding process. International Journal of Advanced Manufacturing Technology, 2010, 48(5–8): 505–511

    Article  Google Scholar 

  67. Gao Y, Turng L S, Wang X. Adaptive geometry and process optimization for injection molding using the kriging surrogate model trained by numerical simulation. Advances in Polymer Technology, 2008, 27(1): 1–16

    Article  Google Scholar 

  68. Zhou J, Turng L S. Process optimization of injection molding using an adaptive surrogate model with Gaussian process approach. Polymer Engineering and Science, 2007, 47(5): 684–694

    Article  Google Scholar 

  69. Sun B S, Chen Z, Gu B Q, et al. Injection molding process parameter optimization for warpage minimization based on uniform design of experiment. Applied Mechanics and Materials, 2011, 37–38: 570–575

    Google Scholar 

  70. Deng Y M, Wang L Z. Applying a uniform design of experiment approach for reducing injection moulding warpage deflection. Key Engineering Materials, 2010, 443: 57–62

    Article  Google Scholar 

  71. Guo W, Hua L, Mao H J. Minimization of sink mark depth in injection-molded thermoplastic through design of experiments and genetic algorithm. International Journal of Advanced Manufacturing Technology, 2014, 72(1–4): 365–375

    Article  Google Scholar 

  72. Chen C C, Su P L, Chiou C B, et al. Experimental investigation of designed parameters on dimension shrinkage of injection molded thin-wall part by integrated response surface methodology and genetic algorithm: A case study. Materials and Manufacturing Processes, 2011, 26(3): 534–540

    Article  Google Scholar 

  73. Chen C C, Su P L, Lin Y C. Analysis and modeling of effective parameters for dimension shrinkage variation of injection molded part with thin shell feature using response surface methodology. International Journal of Advanced Manufacturing Technology, 2009, 45(11–12): 1087–1095

    Article  Google Scholar 

  74. Spina R. Optimisation of injection moulded parts by using ANNPSO approach. Journal of Achievements in Materials and Manufacturing Engineering, 2006, 15(1–2): 146–152

    Google Scholar 

  75. Kurtaran H, Erzurumlu T. Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm. International Journal of Advanced Manufacturing Technology, 2006, 27(5–6): 468–472

    Article  Google Scholar 

  76. Deng Y M, Zhang Y, Lam Y C. A hybrid of mode-pursuing sampling method and genetic algorithm for minimization of injection molding warpage. Materials & Design, 2010, 31(4): 2118–2123

    Article  Google Scholar 

  77. Cheng J, Liu Z, Tan J. Multiobjective optimization of injection molding parameters based on soft computing and variable complexity method. International Journal of Advanced Manufacturing Technology, 2013, 66(5–8): 907–916

    Article  Google Scholar 

  78. Iniesta A A, Alcaraz J L G, Borbon MI R. Optimization of injection molding process parameters by a hybrid of artificial neural network and artificial bee colony algorithm. Revista Facultad De Ingenieria-Universidad De Antioquia, 2013, (67): 43–51

    Google Scholar 

  79. Wang R J, Feng X X, Xia Y J, et al. A back propagation artificial neural network prediction model of the gate freeze time for injection molded polypropylenes. Journal of Macromolecular Science, Part B: Physics, 2013, 52(10): 1414–1426

    Article  Google Scholar 

  80. Taghizadeh S, Ozdemir A, Uluer O. Warpage prediction in plastic injection molded part using artificial neural network. Iranian Journal of Science and Technology. Transaction of Mechanical Engineering, 2013, 37(M2): 149–160

    Google Scholar 

  81. Wang H S, Wang Y N, Wang Y C. Cost estimation of plastic injection molding parts through integration of PSO and BP neural network. Expert Systems with Applications, 2013, 40(2): 418–428

    Article  Google Scholar 

  82. Shi H, Wang X, Xie S. A warpage optimization method for injection molding using artificial neural network combined weighted expected improvement. International Polymer Processing, 2012, 27(3): 341–347

    Article  Google Scholar 

  83. Patel G C M, Krishna P. Prediction and optimization of dimensionalshrinkage variations in injection molded parts using forward and reverse mapping of artificial neural networks. Advanced Materials Research, 2012, 463–464: 674–678

    Google Scholar 

  84. Chen W J, Lin J R. Application and design of artificial neural network for multi-cavity injection molding process conditions. In: Jin D, Lin S, eds. Advances in Future Computer and Control Systems: Volume 2. Berlin: Springer, 2012, 33–38

  85. Yin F, Mao H J, Hua L, et al. Back propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding. Materials & Design, 2011, 32 (4): 1844–1850

    Article  Google Scholar 

  86. Sun X F, Zhu P F, Lu Y J, et al. Prediction of quality index of injection-molded parts by using artificial neural networks. Advanced Materials Research, 2011, 291–294: 432–439

    Article  Google Scholar 

  87. Li X, Hu B, Du R. Predicting the parts weight in plastic injection molding using least squares support vector regression. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2008, 38(6): 827–833

    Article  Google Scholar 

  88. Yang J L, Yin Z Q, Guan C L, et al. Process parameter optimization of micro-injection molding based on support vector machine. China Plastics Industry, 2009, 37(5): 27–30 (in Chinese)

    Google Scholar 

  89. Wang G G, Shan S. Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, 2007, 129(4): 370–380

    Article  Google Scholar 

  90. Simpson T W, Poplinski J D, Koch N P, et al. Metamodels for computer-based engineering design: Survey and recommendations. Engineering with Computers, 2001, 17(2): 129–150

    Article  MATH  Google Scholar 

  91. Oberkampf W L, Trucano T G. Validation methodology in computational fluid dynamics. In: Proceedings of Fluids 2000 Conference and Exhibit, Fluid Dynamics and Co-Located Conferences. AIAA, 2000, 2549: 19–22

    Google Scholar 

  92. Goldberg D E. Genetic Algorithm in Search, Optimization, and Machine Learning. Reading: Addison-Wesley, 1989, 2104–2116

    Google Scholar 

  93. Norman B A, Bean J C. A genetic algorithm methodology for complex scheduling problems. Naval Research Logistics, 1999, 46 (2): 199–211

    Article  MathSciNet  MATH  Google Scholar 

  94. Lin M H, Tsai J F, Yu C S. A review of deterministic optimization methods in engineering and management. Mathematical Problems in Engineering, 2012, 756023

    Google Scholar 

  95. Dang X P. General frameworks for optimization of plastic injection molding process parameters. Simulation Modelling Practice and Theory, 2014, 41: 15–27

    Article  Google Scholar 

  96. Lam Y C, Deng Y M, Au C K. A GA/gradient hybrid approach for injection moulding conditions optimisation. Engineering with Computers, 2006, 21(3): 193–202

    Article  Google Scholar 

  97. Zhang J, Wang J, Lin J, et al. Multiobjective optimization of injection molding process parameters based on Opt LHD, EBFNN, and MOPSO. International Journal of Advanced Manufacturing Technology, 2016, 85(9–12): 2857–2872

    Article  Google Scholar 

  98. Kashyap S, Datta D. Process parameter optimization of plastic injection molding: A review. International Journal of Plastics Technology, 2015, 19(1): 1–18

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51675199 and 51635006) and the National Program on Key Basic Research Project (Grant No. 2013CB035805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dequn Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Zhang, Y., Zhou, X. et al. Intelligent methods for the process parameter determination of plastic injection molding. Front. Mech. Eng. 13, 85–95 (2018). https://doi.org/10.1007/s11465-018-0491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-018-0491-0

Keywords

Navigation