Skip to main content
Log in

Structural design of morphing trailing edge actuated by SMA

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, the morphing trailing edge is designed to achieve the up and down deflection under the aerodynamic load. After a detailed and accurate computational analysis to determine the SMA specifications and layout programs, a solid model is created in CATIA and the structures of the morphing wing trailing edge are produced by CNC machining. A set of DSP measurement and control system is designed to accomplish the controlling experiment of the morphing wing trailing edge. At last, via the force analysis, the trailing edge is fabricated with four sections of aluminum alloy, and the arrangement scheme of SMA wires is determined. Experiment of precise control integral has been performed to survey the control effect. The experiment consists of deflection angle tests of the third joint and the integral structure. Primarily, the ultimate deflection angle is tested in these two experiments. Therefore, the controlling experiment of different angles could be performed within this range. The results show that the deflection error is less than 4%and response time is less than 6.7 s, the precise controlling of the morphing trailing edge is preliminary realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao Z X. Predicting the prospect of applying adaptive wing technology based on smart material and structure to uninhabited combat air vehicle (UCAV). Aircraft Design, 2001, 12(4): 19–22 (in Chinese)

    Google Scholar 

  2. Wen J. NASA’s active aeroelastic wing program. International Aviation, 2004, 10: 61–62 (in Chinese)

    Google Scholar 

  3. Popov AV, Grigorie L T, Botez R M, Mamou M, Mébarki Y. Real time morphing wing optimization validation using wind-tunnel tests. Journal of Aircraft, 2010, 47(4): 1346–1355

    Article  Google Scholar 

  4. Barbarino S, Pecora R, Lecce L, Concilio A, Ameduri S, Calvi E. A novel SMA-based concept for airfoil structural morphing. Journal of Materials Engineering and Performance, 2009, 18(5–6): 696–705

    Article  Google Scholar 

  5. Icardi U, Ferrero L. Preliminary study of an adaptive wing with shape memory alloy torsion actuators. Materials & Design, 2009, 30 (10): 4200–4210

    Article  Google Scholar 

  6. Grigorie T L, Botez R M. Adaptive neuro-fuzzy inference system-based controllers for smart material actuator modelling. Journal of Aerospace Engineering, 2009, 223(6): 655–668

    Google Scholar 

  7. Ikuta K, Tsukamoto M, Hirose S. Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope. In: Proceedings of the IEEE International Conference on Robotics and Automation, Philadelphia, 1988, 427–430

    Google Scholar 

  8. Li F. Research on Driving Mechanism of Adaptive Wing. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese)

    Google Scholar 

  9. Liu J K. The Advanced PID Control and Simulation of MATLAB. Beijing: Publishing House of Electronics Industry, 2003 (in Chinese)

    Google Scholar 

  10. Cho M, Kim S. Structural morphing using two-way shape memory effect of SMA. International Journal of Solids and Structures, 2005, 42(5–6): 1759–1776

    Article  MATH  Google Scholar 

  11. Liu S, Ge W, Li S. Optimal design of compliant trailing edge for shape changing. Chinese Journal of Aeronautics, 2008, 21(2): 187–192

    Article  Google Scholar 

  12. Austin F, Rossi M J, Van Nostrand W, Knowles G, Jameson A. Static shape control for adaptive wing. AIAA Journal, 1994, 32(9): 1895–1901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Xu, Z. & Zhu, Q. Structural design of morphing trailing edge actuated by SMA. Front. Mech. Eng. 8, 268–275 (2013). https://doi.org/10.1007/s11465-013-0261-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-013-0261-y

Keywords

Navigation