Skip to main content
Log in

Capsule endoscopy—A mechatronics perspective

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

The recent advances in integrated circuit technology, wireless communication, and sensor technology have opened the door for development of miniature medical devices that can be used for enhanced monitoring and treatment of medical conditions. Wireless capsule endoscopy is one of such medical devices that has gained significant attention during the past few years. It is envisaged that future wireless capsule endoscopies replace traditional endoscopy procedures by providing advanced functionalities such as active locomotion, body fluid/tissue sampling, and drug delivery. Development of energy-efficient miniaturized actuation mechanisms is a key step toward achieving this goal. Here, we review some of the actuators that could be integrated into future wireless capsules and discuss the existing challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moglia A, Menciassi A, Schurr M O, Dario P. Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems. Biomedical Microdevices, 2007, 9(2): 235–243

    Article  Google Scholar 

  2. El-Matary W. Wireless capsule endoscopy: indications, limitations, and future challenges. Journal of Pediatric Gastroenterology and Nutrition, 2008, 46(1): 4–12

    Article  Google Scholar 

  3. Melmed G Y, Lo S K. Capsule endoscopy: practical applications. Clinical Gastroenterology and Hepatology, 2005, 3(5): 411–422

    Article  Google Scholar 

  4. Given Imaging. http://www.givenimaging.com

  5. http://www.olympusamerica.com/msg_section/index.asp

  6. http://www.intromedic.com

  7. http://www.jinshangroup.com

  8. Quirini M, Menciassi A, Scapellato S, Stefanini C, Dario P. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract. IEEE Trans Mechatronics, 2008, 13(2): 169–179

    Article  Google Scholar 

  9. Quirini M, Menciassi A, Scapellato S, Dario P, Rieber F, Ho C N, Schostek S, Schurr M O. Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointestinal Endoscopy, 2008, 67(7): 1153–1158

    Article  Google Scholar 

  10. Kim HM, Yang S, Kim J, Park S, Cho J H, Park J Y, Kim T S, Yoon E S, Song S Y, Bang S. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointestinal Endoscopy, 2010, 72(2): 381–387

    Article  Google Scholar 

  11. Carta R, Tortora G, Thoné J, Lenaerts B, Valdastri P, Menciassi A, Dario P, Puers R. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosensors & Bioelectronics, 2009, 25(4): 845–851

    Article  Google Scholar 

  12. Kim B, Lee MG, Lee Y P, Kim Y, Lee G. An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators. A, Physical, 2006, 125(2): 429–437

    Article  Google Scholar 

  13. Swain P, Toor A, Volke F, Keller J, Gerber J, Rabinovitz E, Rothstein R I. Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos). Gastrointestinal Endoscopy, 2010, 71(7): 1290–1293

    Article  Google Scholar 

  14. Raju G S, Nath S K. Capsule endoscopy. Current Gastroenterology Reports, 2005, 7(5): 358–364

    Article  Google Scholar 

  15. Rentschler M E, Dumpert J, Platt S R, Ahmed S I, Farritor S M, Oleynikov D. Mobile in vivo camera robots provide sole visual feedback for abdominal exploration and cholecystectomy. Surgical Endoscopy, 2006, 20(1): 135–138

    Article  Google Scholar 

  16. Lim K J, Lee J S, Park S H, Kang S H, Kim H H. Fabrication and characteristics of impact type ultrasonic motor. Journal of the European Ceramic Society, 2007, 27(13–15): 4159–4162

    Article  Google Scholar 

  17. Kim K H, Lee S Y, Kim S. A mobile auto-focus actuator based on a rotary VCM with the zero holding current. Optics Express, 2009, 17(7): 5891–5896

    Article  Google Scholar 

  18. Cavallotti C, Piccigallo M, Susilo E, Valdastri P, Menciassi A, Dario P. An integrated vision system with autofocus for wireless capsular endoscopy. Sensors and Actuators. A, Physical, 2009, 156(1): 72–78

    Article  Google Scholar 

  19. Rasouli M, Kencana A P, Huynh V A. Kiat E, Lai J C Y, Phee L S J. Wireless capsule endoscopes for enhanced diagnostic inspection of gastrointestinal tract. In: Proceedings of IEEE Conference on Robotics Automation and Mechatronics Singapore, 2010, 68–71

  20. Morita E, Ohtsuka N, Shindo Y, Nouda S, Kuramoto T, Inoue T, Murano M, Umegaki E, Higuchi K. In vivo trial of a driving system for a self-propelling capsule endoscope using a magnetic field (with video). Gastrointestinal Endoscopy, 2010, 72(4): 836–840

    Article  Google Scholar 

  21. Carpi F, Galbiati S, Carpi A. Magnetic shells for gastrointestinal endoscopic capsules as a means to control their motion. Biomedicine & Pharmacotherapy, 2006, 60(8): 370–374

    Article  Google Scholar 

  22. Kong K C, Cha J, Jeon D, Cho D D. A rotational micro biopsy device for the capsule endoscope. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, 1839–1843

  23. Park S, Koo K, Bang S M, Park J Y, Song S Y, Cho D D. A novel microactuator for microbiopsy in capsular endoscopes. Journal of Micromechanics and Microengineering, 2008, 18(2): 025032

    Article  Google Scholar 

  24. Wilding I I, Hirst P, Connor A. Development of a new engineering-based capsule for human drug absorption studies. Pharmaceutical Science & Technology Today, 2000, 3(11): 385–392

    Article  Google Scholar 

  25. Parr A F, Sandefer E P, Wissel P, McCartney M, McClain C, Ryo U Y, Digenis G A. Evaluation of the feasibility and use of a prototype remote drug delivery capsule (RDDC) for non-invasive regional drug absorption studies in the GI tract of man and beagle dog. Pharmaceutical Research, 1999, 16(2): 266–271

    Article  Google Scholar 

  26. Gröning R, Bensmann H, Müller R S. Control of drug release from capsules using high frequency energy transmission systems. International Journal of Pharmaceutics, 2008, 364(1): 9–13

    Article  Google Scholar 

  27. Fuhr U, Staib A H, Harder S, Becker K, Liermann D, Schöllnhammer G, Roed I S. Absorption of ipsapirone along the human gastrointestinal tract. British Journal of Clinical Pharmacology, 1994, 38(1): 83–86

    Google Scholar 

  28. Stevens H N E, Wilson C G, Welling P G, Bakhshaee M, Binns J S, Perkins A C, Frier M, Blackshaw E P, Frame M W, Nichols D J, Humphrey M J, Wicks S R. Evaluation of Pulsincap to provide regional delivery of dofetilide to the human GI tract. International Journal of Pharmaceutics, 2002, 236(1–2): 27–34

    Article  Google Scholar 

  29. Kencana A P, Rasouli M, Huynh V A, Ting E K, Chong Y L, Nguyen D Q H, Tan S L, Wong K J, Phee S J. An Ingestible Wireless Capsule for Treatment of Obesity, In: Proceedings of the Engineering in Medicine and Biology, 2010

  30. Swain P. The future of wireless capsule endoscopy. World Journal of Gastroenterology, 2008, 14(26): 4142–4145

    Article  Google Scholar 

  31. Sterzer F. Microwave medical devices. Microwave Magazine, IEEE, 2002, 3(1): 65–70

    Article  Google Scholar 

  32. Wang L, Drysdale T D, Cumming D R S. In situ characterization of two wireless transmission schemes for ingestible capsules. Biomedical Engineering, IEEE Transactions on, 2007, 54(11): 2020–2027

    Article  Google Scholar 

  33. Lenaerts B, Puers R. An inductive power link for a wireless endoscope. Biosensors & Bioelectronics, 2007, 22(7): 1390–1395

    Article  Google Scholar 

  34. McSpadden J O, Yoo T, Chang K. Theoretical and experimental investigation of a rectenna element for microwave power transmission. Microwave Theory and Techniques, IEEE Transactions on, 1992, 40(12): 2359–2366

    Article  Google Scholar 

  35. Arra S, Leskinen J, Heikkila J, Vanhala J. Ultrasonic Power and Data Link forWireless Implantable Applications. In: Proceedings of Wireless Pervasive Computing, 2007

  36. Ryu M, Kim J D, Chin H U, Kim J, Song S Y. Three-dimensional power receiver for in vivo robotic capsules. Medical & Biological Engineering & Computing, 2007, 45(10): 997–1002

    Article  Google Scholar 

  37. Xin W, Yan G, Wang W. Study of a wireless power transmission system for an active capsule endoscope. International Journal of Medical Robotics and Computer Assisted Surgery, 2010, 6(1): 113–122

    Google Scholar 

  38. Chao H, Max Qinghu M, Mandal M. Efficient magnetic localization and orientation technique for capsule endoscopy. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, 628–633

  39. Johannessen E A, Wang L, Reid S W J, Cumming D R S, Cooper J M. Implementation of radiotelemetry in a lab-in-a-pill format. Lab on a Chip, 2006, 6(1): 39–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, L., Rasouli, M., Kencana, A.P. et al. Capsule endoscopy—A mechatronics perspective. Front. Mech. Eng. 6, 33–39 (2011). https://doi.org/10.1007/s11465-011-0203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-011-0203-5

Keywords

Navigation