Skip to main content
Log in

Response Solutions for KdV Equations with Liouvillean Frequency

  • Research Article
  • Published:
Frontiers of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we prove an infinite dimensional KAM (Kolmogorov–Arnold–Moser) theorem, which can be used to the KdV equations

$${u_t} + {\partial _{xxx}}u - \varepsilon {\partial _x}f(\omega t,x,u) = 0,$$

where \(\omega = \xi \bar \omega ,\,\,\bar \omega = (1,\alpha)\) is Liouvillean forced frequency and f is real analytic. We obtain a C smooth response solution under zero mean-value periodic boundary conditions. The proof is based on a modified infinite dimensional KAM theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Avila A., Fayad B.R., Krikorian R., A KAM scheme for SL(2, R) cocycles with Liouvillean frequencies. Geom. Funct. Anal., 2011, 21(5): 1001–1019

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldi P., Berti M., Montalto R., KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann., 2014, 359(1–2): 471–536

    Article  MathSciNet  MATH  Google Scholar 

  3. Baldi P., Berti M., Montalto R., KAM for autonomous quasi-linear perturbations of KdV. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2016, 33: 1589–1638

    Article  MathSciNet  MATH  Google Scholar 

  4. Baldi P., Berti M., Montalto R., KAM for autonomous quasi-linear perturbations of mKdV. Boll. Unione Mat. Ital., 2016, 9(2): 143–188

    Article  MathSciNet  MATH  Google Scholar 

  5. Berti M., Biasco L., Procesi M., KAM theory for the Hamiltonian DNLW. Ann. Sci. Éc. Norm. Supér. (4), 2013, 46(2): 301–373

    Article  MathSciNet  MATH  Google Scholar 

  6. Berti M., Biasco L., Procesi M., KAM for reversible derivative wave equations. Arch. Ration. Mech. Anal., 2014, 212(3): 905–955

    Article  MathSciNet  MATH  Google Scholar 

  7. Berti M., Bolle P., Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity, 2012, 25(9): 2579–2613

    Article  MathSciNet  MATH  Google Scholar 

  8. Berti M., Bolle P., Quasi-periodic solutions with Sobolev regularity of NLS on \({\mathbb{T}^d}\) with a multiplicative potential. J. Eur. Math. Soc., 2013, 15(1): 229–286

    Article  MathSciNet  MATH  Google Scholar 

  9. Berti M., Procesi M., Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces. Duke Math. J., 2011, 159(3): 479–538

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourgain J., Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schro-dinger equations. Ann. of Math. (2), 1998, 148(2): 363–439

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourgain J., Green’s Function Estimates for Lattice Schrodinger Operators and Applications. Ann. of Math. Stud., Princeton, NJ: Princeton University Press, 2005

    Google Scholar 

  12. Calleja R.C., Celletti A., Corsi L., de la Llave R., Response solutions for quasi-periodically forced, dissipative wave equations. SIAM J. Math. Anal., 2017, 49(4): 3161–3207

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang N.N., Geng J.S., Lou Z.W., Bounded non–response solutions with Liouvillean forced frequencies for nonlinear wave equations. J. Dynam. Differential Equations, 2021, 33(4): 2009–2046

    Article  MathSciNet  MATH  Google Scholar 

  14. Craig W.L., Wayne C.E., Newton’s method and periodic solutions of nonlinear wave equations. Comm. Pure Appl. Math., 1993, 46(11): 1409–1498

    Article  MathSciNet  MATH  Google Scholar 

  15. Eliasson L.H., Kuksin S.B., KAM for the nonlinear Schrodinger equation. Ann. of Math. (2), 2010, 172(1): 371–435

    Article  MathSciNet  MATH  Google Scholar 

  16. Geng J.S., Hong W., Invariant tori of full dimension for second KdV equations with the external parameters. J. Dynam. Differential Equations, 2017, 29(4): 1325–1354

    Article  MathSciNet  MATH  Google Scholar 

  17. Geng J.S., Wu J., Real analytic quasi-periodic solutions with more Diophantine frequencies for perturbed KdV equations. J. Dynam. Differential Equations, 2017, 29(3): 1103–1130

    Article  MathSciNet  MATH  Google Scholar 

  18. Geng J.S., Xu X.D., You J.G., An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrodinger equation. Adv. Math., 2011, 226: 5361–5402

    Article  MathSciNet  MATH  Google Scholar 

  19. Geng J.S., You J.G., A KAM theorem for one dimensional Schrodinger equation with periodic boundary conditions. J. Differential Equations, 2005, 209(1): 1–56

    Article  MathSciNet  MATH  Google Scholar 

  20. Geng J.S., You J.G., A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Comm. Math. Phys., 2006, 262(2): 343–372

    Article  MathSciNet  MATH  Google Scholar 

  21. Hou X.J., You J.G., Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math., 2012, 190(1): 209–260

    Article  MathSciNet  MATH  Google Scholar 

  22. Kappeler T., Poschel J., KdV & KAM. Berlin: Springer–Verlag, 2003

    Book  MATH  Google Scholar 

  23. Krikorian R., Wang J., You J.G., Zhou Q., Linearization of quasiperiodically forced circle flow beyond Brjuno condition. Comm. Math. Phys., 2016, 358(1): 81–100

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuksin S.B., Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen, 1987, 21(3): 22–37

    Article  MathSciNet  MATH  Google Scholar 

  25. Kuksin S.B., A KAM-theorem for equations of the Korteweg-de Vries type. Rev. Math. Phys., 1998, 10 (3): ii+64 pp.

  26. Kuksin S.B., Analysis of Hamiltonian PDEs. Oxford: Oxford University Press, 2000

    MATH  Google Scholar 

  27. Liu J.J., Yuan X.P., Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient. Comm. Pure Appl. Math., 2010, 63: 1145–1172

    MathSciNet  MATH  Google Scholar 

  28. Liu J.J., Yuan X.P., A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations. Comm. Math. Phys., 2011, 307(3): 629–673

    Article  MathSciNet  MATH  Google Scholar 

  29. Lou Z.W., Geng J.S., Quasi-periodic response solutions in forced reversible systems with Liouvillean frequencies. J. Differential Equations, 2017, 263(7): 3894–3927

    Article  MathSciNet  MATH  Google Scholar 

  30. Poschel J., A KAM-theorem for some nonlinear partial differential equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1996, 23(1): 119–148

    MathSciNet  MATH  Google Scholar 

  31. Wang J., You J.G., Boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequency. J. Differential Equations, 2016, 261(2): 1068–1098

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang J., You J.G., Zhou Q., Response solutions for quasi-periodically forced harmonic oscillators. Trans. Amer. Math. Soc., 2017, 369(6): 4251–4274

    Article  MathSciNet  MATH  Google Scholar 

  33. Wayne C.E., Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys., 1990, 127(3): 479–528

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu X.D., You J.G., Zhou Q., Quasi-periodic solutions of NLS with Liouvillean frequency. 2017, arXiv:1707.04048

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11971012). Yingnan Sun was supported by CSC (No. 202006190134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, N., Geng, J. & Sun, Y. Response Solutions for KdV Equations with Liouvillean Frequency. Front. Math 18, 1083–1112 (2023). https://doi.org/10.1007/s11464-021-0099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-021-0099-2

Keywords

MSC2020

Navigation