Skip to main content
Log in

Generalized Jacobi-Gauss-Lobatto interpolation

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We introduce the generalized Jacobi-Gauss-Lobatto interpolation involving the values of functions and their derivatives at the endpoints, which play important roles in the Jacobi pseudospectral methods for high order problems. We establish some results on these interpolations in non-uniformly weighted Sobolev spaces, which serve as the basic tools in analysis of numerical quadratures and various numerical methods of differential and integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askey R. Orthogonal Polynomials and Special Functions. Regional Conference Series in Applied Mathematics, Vol 21. Philadelphia: SIAM, 1975

    Google Scholar 

  2. Babuška I, Guo B Q. Direct and inverse approximation theorems for the p-version of finite element method in the framework of weighted Besov spaces. Part I: Approximability of functions in the weighted Besov space. SIAM J Numer Anal, 2001, 39: 1512–1538

    Article  MathSciNet  MATH  Google Scholar 

  3. Belhachmi Z, Bernardi C, Karageorghis A. Spectral element discretization of the circular driven cavity. Part II: The bilaplacian equation. SIAM J Numer Anal, 2001, 38: 1926–1960

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergh J, Löfström J. Interpolation Spaces, An Introduction. Berlin: Spinger-Verlag, 1976

    Book  MATH  Google Scholar 

  5. Bernardi C, Dauge M, Maday Y. Spectral Methods for Axisymmetric Domains. Series in Applied Mathematics, Vol 3. Paris: Gauhtier-Villars & North-Holland, 1999

    Google Scholar 

  6. Bernardi C, Maday Y. Spectral methods. In: Ciarlet P G, Lions P L, eds. Handbook of Numerical Analysis, Vol 5, Techniques of Scientific Computing. Amsterdam: Elsevier, 1997, 209–486

    Google Scholar 

  7. Bernardi C, Maday Y. Some spectral approximations of one-dimensional fourth-order problems. In: Nevai P, Pinkus A, eds. Progress in Approximation Theory. San Diego: Academic Press, 1991, 43–116

    Google Scholar 

  8. Bernardi C, Maday Y. Polynomial interpolation results in Sobolev spaces. J Comput Appl Math, 1992, 43: 53–80

    Article  MathSciNet  MATH  Google Scholar 

  9. Bialecki B, Karageorghis A. A Legendre spectral Galerkin method for the biharmonic Dirichlet problem. SIAM J Sci Comput, 2000, 22: 1549–1569

    Article  MathSciNet  MATH  Google Scholar 

  10. Bjørstad P E, Tjøstheim B P. Efficient algorithms for solving a fourth-order equation with spectral-Galerkin method. SIAM J Sci Comput, 1997, 18: 621–632

    Article  MathSciNet  Google Scholar 

  11. Boyd J P. Chebyshev and Fourier Spectral Methods. 2nd ed. Mineola: Dover, 2001

    MATH  Google Scholar 

  12. Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods in Fluid Dynamics. Berlin: Springer-Verlag, 1998

    Google Scholar 

  13. Dubiner M. Spectral methods on triangles and other domains. J Sci Comput, 1991, 6: 345–390

    Article  MathSciNet  MATH  Google Scholar 

  14. Ezzirani A, Guessab A. A fast algorithm for Gaussian type quadrature formulae with mixed boundary conditions and some lumped mass spectral approximations. Math Comp, 1999, 225: 217–248

    Article  MathSciNet  Google Scholar 

  15. Gottlieb D, Orszag S A. Numerical Analysis of Spectral Methods: Theory and Applications. Philadelphia: SIAM, 1977

    Book  MATH  Google Scholar 

  16. Guo B Y. Spectral Methods and Their Applications. Singapore: World Scientific, 1998

    Book  MATH  Google Scholar 

  17. Guo B Y. Gegenbauer approximation and its applications to differential equations on the whole line. J Math Anal Appl, 1998, 226: 180–206

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo B Y. Jacobi spectral approximation and its applications to differential equations on the half line. J Comput Math, 2000, 18: 95–112

    MathSciNet  MATH  Google Scholar 

  19. Guo B Y. Gegenbauer approximation in certain Hilbert spaces and its applications to singular differential equations on the whole line. SIAM J Numer Anal, 2000, 37: 621–645

    MathSciNet  MATH  Google Scholar 

  20. Guo B Y. Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. J Math Anal Appl, 2000, 243: 373–408

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo B Y, Shen J, Wang Z Q. A rational approximation and its applications to differential equations on the half line. J Sci Comput, 2000, 15: 117–148

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo B Y, Shen J, Wang Z Q. Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval. Int J Numer Meth Engrg, 2002, 53: 65–84

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo B Y, Wang L L. Jacobi interpolation approximations and their applications to singular differential equations. Adv Comput Math, 2000, 14: 227–276

    Google Scholar 

  24. Guo B Y, Wang L L. Error analysis of spectral method on a triangle. Adv Comput Math, 2007, 26: 473–496

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo B Y, Wang L L. Jacobi approximations and Jacobi-Gauss-type interpolations in non-uniformly Jacobi-weighted Sobolev spaces. J Approx Theory, 2004, 28: 1–41

    Article  Google Scholar 

  26. Guo B Y, Wang Z Q, Wan Z S, Chu D L. Second order Jacobi approximation with applications to fourth-order differential equations. Appl Numer Math, 2005, 55: 480–502

    Article  MathSciNet  MATH  Google Scholar 

  27. Hardy G H, Littlewood J E, Pólya G. Inequalities. Cambridge: Cambridge University Press, 1952

    MATH  Google Scholar 

  28. Junghanns V P. Uniform convergence of approximate methods for Cauchy type singular equation over (−1, 1). Wissenschaftliche Zeitschrift Technische Hocschule, Karl-Mars Stadt, 1984, 26: 250–256

    MathSciNet  Google Scholar 

  29. Karniadakis G, Sherwin S. Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford: Oxford University Press, 1999

    Google Scholar 

  30. Owens R G. Spectral approximation on the triangle. Proc R Soc Lond Ser A, 1998, 454: 857–872

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen J. Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J Sci Comput, 1994, 15: 1489–1505

    Article  MathSciNet  MATH  Google Scholar 

  32. Sherwin S J, Farniadakis G E. A new triangular and tetrahedral basis for high-order finite element methods. Int J Numer Methods Engrg, 1995, 38: 3775–3802

    Article  MATH  Google Scholar 

  33. Stephan E P, Suri M. On the convergence of the p-version of the boundary element Galerkin method. Math Comp, 1989, 52: 31–48

    MathSciNet  MATH  Google Scholar 

  34. Szegö G. Orthogonal Polynomials. Providence: Amer Math Soc, 1959

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengsu Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, Z., Guo, B. & Zhang, C. Generalized Jacobi-Gauss-Lobatto interpolation. Front. Math. China 8, 933–960 (2013). https://doi.org/10.1007/s11464-013-0271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-013-0271-4

Keywords

MSC

Navigation