Skip to main content
Log in

Modification effects of amphiphilic comb-like polysiloxane containing polyether side chains on the PVDF membranes prepared via phase inversion process

  • Research Article
  • Published:
Frontiers of Chemistry in China

Abstract

Amphiphilic comb-like polysiloxane (ACPS) containing polyether side chains was used as the modification reagent in the preparation of hydrophilic porous poly (vinylidene fluoride) (PVDF) membranes via a phase inversion process. The effects of ACPS on morphology, crystallinity, mechanical properties, reservation of ACPS in the phase inversion process, chemical structure, hydrophilicity and filterability performance of porous PVDF membranes were discussed. It was found that the addition of ACPS would result in the delayed demixing which yields “sponge-like” sublayers and longer crystallization time during the membrane formation process. It was revealed that O/F ratios of the bulk membrane were almost the same as those of the corresponding casting solutions which obviously indicated the high reservation of ACPS in the membrane formation process. The fact that the O/F ratios in the membrane surface layers were much higher than those in the bulk membrane proved the enrichment of ACPS on the surface. The filterability experiments and water contact angle testing proved the hydrophilicity of the blend membranes. Through a schematic model, the mechanism relating the membrane structure and performance was interpreted. From the observed results, it can be concluded that ACPS acts as a potential candidate material for preparing PVDF membranes with extraordinary hydrophilicity and filterability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ochoa N A, Masuelli M, Marchese J. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. J Membr Sci, 2003, 226(1–2): 203–211

    Article  CAS  Google Scholar 

  2. Liu F, Zhu B K, Xu Y Y. Improving the hydrophilicity of poly (vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers. Appl Surf Sci, 2006, 253: 2096–2101

    Article  CAS  Google Scholar 

  3. Ying L, Kang E T, Neoh K G. Covalent immobilization of glucose oxidase on microporous membranes prepared from poly(vinylidene fluoride) with grafted poly(acrylic acid) side chains J Membr Sci, 2002, 208: 361–374

    Article  CAS  Google Scholar 

  4. Park YW, Inagaki N. Surface modification of poly(vinylidene fluoride) film by remote Ar, H2, and O2 plasmas. Polymer, 2003, 44: 1569–1575

    Article  CAS  Google Scholar 

  5. Clochard MC, Bègue J, Lafon A, Caldemaison D, Bittencourt C, Pireaux J J, Betz N. Tailoring bulk and surface grafting of poly(acrylic acid) in electron-irradiated PVDF. Polymer, 2004, 45: 8683–8694

    Article  CAS  Google Scholar 

  6. Klee D, Ademovic Z, Bosserhoff A, Hoecker H, Maziolis G, Erli H J. Surface modification of poly(vinylidenefluoride) to improve the osteoblast adhesion. Biomaterials, 2003, 24: 3663–3670

    Article  CAS  Google Scholar 

  7. Han S, Choi W K, Yoon K H, Koh S K. Surface reaction on polyvinylidenefluoride (PVDF) irradiated by low energy ion beam in reactive gas environment. J Appl Polym Sci, 1999, 72: 41–47

    Article  CAS  Google Scholar 

  8. Enrica F, Johannes C J, Alessandra C, Efrem C, Enrico D. Effect of additives in the casting solution on the formation of PVDF membranes. Desalination, 2006, 192: 190–197

    Article  Google Scholar 

  9. Wang Y Q, Wang T, Su Y L, Peng F B, Wu H, Jiang Z Y. Remarkable Reduction of Irreversible Fouling and Improvement of the Permeation Properties of Poly(ether sulfone) Ultrafiltration Membranes by Blending with Pluronic F127. Langmuir, 2005, 21: 11856–11862

    Article  CAS  Google Scholar 

  10. Yeow ML, Liu Y, Li K. Preparation of porous PVDF hollow fiber membrane via a phase inversion method using lithium perchlorate (LiClO4) as an additive. J Membr Sci, 2005, 258: 16–22

    Article  CAS  Google Scholar 

  11. LU Y, CHEN H L, LI B G. Influence of Additives on Phase Separation Process of PVDF Solution and Membrane Morphology. Acta Polymerica Sinica, 2002, 5: 656–661 (in Chinese)

    Google Scholar 

  12. Lu X F, Bian X K. Surface modification of ultrafiltration membrane and its application. Membr Sci & Technol, 2003, 23: 97–115 (in Chinese)

    Google Scholar 

  13. Chen H, Belfort G. Surface modification of poly(ether sulfone) ultrafiltration membranes by low-temperature plasma-induced graft polymerization. J Appl Polym Sci, 1999, 72: 1699–1711

    Article  CAS  Google Scholar 

  14. Pieracci J, Crivello J V, Belfort G. Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling. J Membr Sci, 1999, 156: 223–240

    Article  CAS  Google Scholar 

  15. Nunes S P, Sforca M L, Peinemann K V. Dense hydrophilic composite membranes for ultrafiltration. J Membr Sci, 1995, 106: 49–56

    Article  CAS  Google Scholar 

  16. LI B, CHEN W G, WANG X G, ZHOU Q X. PNIPAAm-Grafted Layers on Polypropylene Films II. Surface Properties and Temperature Sensitivity Study. Acta Polymerica Sinica, 2003, 1: 7–12 (in Chinese)

    Google Scholar 

  17. Kelly S T, Zydney A L. Mechanisms for BSA fouling during microfiltration. J Membr Sci, 1995, 107: 115–127

    Article  CAS  Google Scholar 

  18. Kim J H, Lee K H. Effect of PEG additive on membrane formation by phase inversion. J Appl Polym Sci, 1998, 138: 153–163

    CAS  Google Scholar 

  19. Kim I C, Lee K H. Effect of poly(ethylene glycol) 200 on the formation of a polyetherimide asymmetric membrane and its performance in aqueous solvent mixture permeation. J Membr Sci, 2004, 230: 183–188

    Article  CAS  Google Scholar 

  20. Chen N P, Hong L. Surface phase morphology and composition of the casting films of PVDF-PVP blend. Polymer, 2002, 43: 1429–1436

    Article  CAS  Google Scholar 

  21. Qin J J, Wong F S, Li Y, Liu Y T. A high flux ultrafiltration membrane spun from PSU/PVP (K90)/DMF/1,2-propanediol. J Membr Sci, 2003, 211: 139–147

    Article  CAS  Google Scholar 

  22. Park J Y, Acar M H, Ariya A, William K, Mayes A M. Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials, 2006, 27: 856–865

    Article  CAS  Google Scholar 

  23. Ma X L, Su Y L, Sun Q, Wang Y Q, Jiang Z Y. Preparation of protein-adsorption-resistant polyethersulfone ultrafiltration membranes through surface segregation of amphiphilic comb copolymer. J Membr Sci, 2007, 292: 116–124

    Article  CAS  Google Scholar 

  24. Hester J F, Banerjee P, Won Y Y, Akthakul A, Acar M H, Mayes A M. ATRP of Amphiphilic Graft Copolymers Based on PVDF and Their Use as Membrane Additives. Macromolecules, 2002, 35: 7652–7661

    Article  CAS  Google Scholar 

  25. Hester J F, Mayes A M. Design and performance of foul-resistant poly(vinylidene fluoride) membranes prepared in a single-step by surface segregation. J Membr Sci, 2002, 202: 119–135

    Article  CAS  Google Scholar 

  26. Irvine D J, Mayes A M. Nanoscale Clustering of RGD peptides at surfaces using comb polymers. 1. synthesis and characterization of comb thin films. Biomacromolecules, 2001, 2: 85–94

    Article  CAS  Google Scholar 

  27. Hester J F, Banerjee P, Mayes A M. Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules, 1999, 32: 1643–1650

    Article  CAS  Google Scholar 

  28. Legrow G E, Buese M A. Alkylmethylsiloxane dimethylsiloxane polyalkylene oxide copolymers. Eur Patent, EP. 1149872A2. 2001-10-31

  29. Lovinger A J. Annealing of Poly (vinylidene fluoride) and formation of a fifth phase. Macromolecules, 1982, 15: 40–44

    Article  CAS  Google Scholar 

  30. Zheng Q Z, Wang P, Yang Y N. Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process. J Membr Sci, 2006, 279: 230–237

    Article  CAS  Google Scholar 

  31. Nardin C, Meier W. Hybrid materials from amphiphilic block copolymers and membrane proteins. Molecular Biotechnology, 2002, 90: 17–26

    Article  CAS  Google Scholar 

  32. Callewaert M, Gohy J F, Dupont-Gillain C C, Laurence B P and Rouxhet P G. Surface morphology and wetting properties of surfaces coated with an amphiphilic diblock copolymer. Surf Sci, 2005, 575: 125–135

    Article  CAS  Google Scholar 

  33. Yuan J Y, Wei G Y, Wang Y M, Pan G Y. Syntheses and Characterization of ABA Type Amphiphilic Block Copolymer. Acta Polymerica Sinica, 2001, 5: 625–628 (in Chinese)

    Google Scholar 

  34. Gao B J, Yang Y F, Jiu H F, Ge Z. Synthesis of Water-Solution Amphiphilic Acrylamide-Styrene Block Polymer Using Microemulsion Method. Acta Polymerica Sinica, 2001, 5: 608–612 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoku Zhu.

Additional information

__________

Translated from Acta Polymerica Sinica, 2007, 12: 1168–1175

About this article

Cite this article

Qian, Y., Wang, J., Zhu, B. et al. Modification effects of amphiphilic comb-like polysiloxane containing polyether side chains on the PVDF membranes prepared via phase inversion process. Front. Chem. China 3, 432–439 (2008). https://doi.org/10.1007/s11458-008-0078-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11458-008-0078-0

Keywords

Navigation