Skip to main content
Log in

Rapid functionalization of carbon nanotube and its electrocatalysis

  • Research Article
  • Published:
Frontiers of Chemistry in China

Abstract

It was reported that carbon nanotube (CNT) was functionalized with the electroactive Nile blue (NB), which is a phenoxazine dye, by a method of adsorption to form a NB-CNT nanocomposite. The NB-CNT nanocomposite was characterized by several spectroscopic techniques, for example, Ultraviolet-visible spectroscopy (UV-VIS), Fourier transform infrared (FTIR), Raman spectroscopy and scanning electron microscopy (SEM) etc., and the results showed that NB could rapidly and effectively be adsorbed on the surface of CNT with a high stability without changing the native structure of NB and the structure properties of CNT. Moreover, it was shown that the dispersion ability of CNT in aqueous solution had a significantly improvement after CNT functionalized with NB even at a level of high concentration, for example, 5 mg of NB-CNT per 1 mL of H2O. The NB-CNT/ glasssy carbon (GC) electrode was fabricated by modifying NB-CNT nanocomposite on the GC electrode surface and its electrochemical properties were investigated by cyclic voltammetry. The cyclic voltammetric results indicate that CNT can improve the electrochemical behavior of NB and greatly enhance its redox peak currents. While the NB-CNT/GC electrode exhibited a pair of well-defined and nearly symmetrical redox peaks with the formal potential of (−0.422±0.002) V (versus SCE, 0.1 mol/L PBS, pH 7.0), which was almost independent on the scan rates, for electrochemical reaction of NB monomer; and the redox peak potential of NB polymer located at about −0.191 V. The experimental results also demonstrated that NB and CNT could synergistically catalyze the electrochemically oxidation of NADH (β-nicotinamide adenine dinucleotide, reduced form) and NB-CNT exhibited a high performance with lowing the overpotential of more than 560 mV. The NB-CNT/GC electrode could effectively sense the concentration of NADH, which was produced during the process of oxidation of substrate (e.g. ethanol) catalyzed by dehydrogenase (e.g. alcohol dehydrogenase). The presented method for functionalization of CNT had several advantages, such as rapid and facile CNT functionalization, easy electrode fabrication and high electrocatalytic activity, etc., and could be used for fabrication electrochemical biosensor on the basis of dehydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajayan P M. Nanotubes from carbon. Chem Rev, 1999, 99: 1,787–1,799

    Article  CAS  Google Scholar 

  2. Dai H. Carbon nanotubes: Opportunities and challenges. Surf Sci, 2002, 500: 218–241

    Article  CAS  Google Scholar 

  3. Belin T, Epron F. Characterization methods of carbon nanotubes: A review. Materials Science & Engineering B, 2005, 119:105–118

    Article  CAS  Google Scholar 

  4. Gooding J J. Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim. Acta, 2005, 50: 3,049–3,060

    Article  CAS  Google Scholar 

  5. Wang J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis, 2005, 17: 7–14

    Article  CAS  Google Scholar 

  6. Cai Chenxin, Chen Jing, Bao Jianchun, Lu Tianhong. Applications of carbon nanotubes in analytical chemistry. Chin J Anal Chem, 2004, 32: 381–387 (in Chinese)

    CAS  Google Scholar 

  7. Wang Z, Luo G A. The progress of carbon nanotube in analytical chemistry. Chin J Anal Chem, 2003, 31: 1,004–1,009 (in Chinese)

    CAS  Google Scholar 

  8. Cai Chenxin, Chen Jing. Direct electrochemistry of horseradish peroxidase at a carbon nanotube electrode. Acta Chim Sinica, 2004, 62: 335–340 (in Chinese)

    CAS  Google Scholar 

  9. Cai Chenxin, Chen Jing, Lu Tianhong. Direct electron-transferof glucose oxidase at the carbon nanotubes modified electrode. Sci in China (Ser B), 2003, 33: 511–518 (in Chinese)

    Google Scholar 

  10. Chen J, Cai C X. Direct electrochemical oxidation of NADPH at a low potential on the carbon nanotube modified glassy carbon electrode. Chin J Chem, 2004, 22: 167–171

    Article  CAS  Google Scholar 

  11. Wang M K, Shen Y, Liu Y, Wang T, Zhao F, Liu B F, Dong S J. Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes. J Electroanal Chem, 2005, 578:121–127

    Article  CAS  Google Scholar 

  12. Xu J J, Wang G, Zhang Q, Zhou D M, Chen H Y. Interfacing cytochrome c to Au electrodes with humic acid film. Electrochem Commun, 2004, 6: 278–283

    Article  CAS  Google Scholar 

  13. Zhao G C, Yin Z Z, Zhang L, Wei X W. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2. Electrochem Commun, 2005, 7: 256–260

    Article  CAS  Google Scholar 

  14. Wang J X, Li M X, Shi Z J, Li N Q, Gu Z N. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal Chem, 2002, 74:1,993–1,997

    CAS  Google Scholar 

  15. Cai C X, Chen J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal Biochem, 2004, 325: 285–292

    Article  CAS  Google Scholar 

  16. Xu J X, Zhu J J, Wu Q, Hu Z, Chen H Y. Direct electron transfer between glucose oxidase and multi-walled carbon nanotubes. Chin J Chem, 2003, 21: 1,088–1,091

    CAS  Google Scholar 

  17. Ouyang M, Huang J L, Lieber C M. Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc Chem Res, 2002, 35: 1,018–1,025

    Article  CAS  Google Scholar 

  18. Dai H J. Carbon nanotubes: Synthesis, integration, and properties. Acc Chem Res, 2002, 35: 1,035–1,044

    Article  CAS  Google Scholar 

  19. Sun Y P, Fu K, Huang W. Functionalized carbon nanotubes: Properties and applications. Acc Chem Res, 2002, 35: 1,096–1,104

    Article  CAS  Google Scholar 

  20. Niyogi R, Hamon M A, Haddon R C. Chemistry of single-walled carbon nanotubes. Acc Chem Res, 2002, 35, 1,105–1,113

    Article  CAS  Google Scholar 

  21. Dyke C A, Tour J M. Decomposing complex cooperative ligand binding into simple components: Connections between microscopic and macroscopic models. J Phys Chem B, 2004, 108:11,151–11,169

    CAS  Google Scholar 

  22. Hong C Y, You Y Z, Pan C Y. Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT solymerization. Chem Mater, 2005, 17:2,247–2,254

    CAS  Google Scholar 

  23. Gómez F J, Chen R J, Wang D, Waymouth R M, Dai H. Ring opening metathesis polymerization on non-covalently functionalized single-walled carbon nanotubes electronic supplementary information (ESI) available: Full experimental details for compounds 2–4, nanotube preparation and microscopy analysis. Chem Commun, 2003, 190–191

  24. Holzinger M, Abraham J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A. Functionalization of single-walled carbon nanotubes with (R-) oxycarbonyl nitrenes. J Am Chem Soc, 2003, 125: 8,566–8,580

    Article  CAS  Google Scholar 

  25. Chen J, Hamon M A, Hu H, Chen Y, Rao A M, Eklund P C, Haddon R C. Solution properties of single-walled carbon nanotubes, Science, 1998, 282: 95–98

    Article  CAS  Google Scholar 

  26. Pantarotto D, Partidos C D, Graff R, Hoebeke J, Briand J P, Prato M, Bianco A. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J Am Chem Soc, 2003, 125: 6,160–6,164

    Article  CAS  Google Scholar 

  27. Dieckmann G R, Dalton A B, Johnson P A, Razal J, Chen J, Giordano G M, Muñoz E, Musselman I H, Baughman R H, Draper R. K. Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc, 2003, 125:1,770–1,777

    Article  CAS  Google Scholar 

  28. Georgalilas Y, Tagmatarchis N, Pantarotto D, Bianco A, Briand J P, Prato M. Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun, 2002, 3,050–3,051

    Google Scholar 

  29. Azamian B R, Davis J J. Bioelectrochemical single-walled carbon nanotubes. J Am Chem Soc, 2002, 124: 12,664–12,665

    Article  CAS  Google Scholar 

  30. Shim M, Kam N W, Dai H J. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett, 2002, 2: 285–288

    Article  CAS  Google Scholar 

  31. Baker S E, Cai W. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: Synthesis and hybridization. Nano Lett, 2002, 2:1,413–1,417

    Article  CAS  Google Scholar 

  32. Haremza J M, Kahn M A. Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes. Nano Lett, 2002, 2:1,253–1,258

    Article  CAS  Google Scholar 

  33. Whitby R L D, Hsu W K, Collison D. Multiwalled carbon nanotubes coated with tungsten disulfide. Chem Meter, 2002, 14:2,209–2,217

    CAS  Google Scholar 

  34. Stephenson J J, Hudson J L, Azad S, Tour J M. Individualized single walled carbon nanotubes from bulk material using 96% sulfuric acid as solvent. Chem Mater, 2006, 18: 374–377

    Article  CAS  Google Scholar 

  35. Wang Y, Iqbal Z, Mitra S. Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. J Am Chem Soc, 2006, 128: 95–99

    Article  CAS  Google Scholar 

  36. Mickelson E T. Fluorination of single-wall carbon nanotubes. Chem Phys Chem, 1998, 296: 188–194

    CAS  Google Scholar 

  37. Banerjee S, Wong S S. Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J Phys Chem B, 2002, 106: 12,144–12,151

    Article  CAS  Google Scholar 

  38. Chen R J, Zhang Y, Wang D, Dai H J. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc, 2001, 123: 3,838–3,839

    CAS  Google Scholar 

  39. Star A, Stoddart J F, Steuerman D, Diehl M, Boukai A, Wong E W, Yang X, Chung S W, Choi H, Heath J R. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed, 2001, 40: 1,721–1,725

    Article  CAS  Google Scholar 

  40. Yan Y M, Zhang M N, Gong K P, Su L, Guo Z X, Mao L Q. Adsorption of methylene blue dye onto carbon nanotubes: A route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chem Mater, 2005, 17:3,457–3,463

    CAS  Google Scholar 

  41. Li Q W, Zhang J, Yan H, He M S, Liu Z F. Thionine-mediated chemistry of carbon nanotubes. Carbon, 2004, 42: 287–291

    Article  CAS  Google Scholar 

  42. Wang J, Musameh M, Lin Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J Am Chem Soc, 2003, 125: 2,408–2,409

    CAS  Google Scholar 

  43. Gorton L. Chemically modified electrodes for the electrocatalytic oxidation of nicotinamide coenzymes. J Chem Soc Faraday Trans I, 1986, 82: 1,245–1,258

    Article  CAS  Google Scholar 

  44. Persson B. A chemically modified graphite electrode for electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide based on a phenothiazine derivative, 3-b-naphthoyl-toluidine blue. J Electroanal Chem, 1990, 287: 61–80

    Article  CAS  Google Scholar 

  45. Chen J, Bao J C, Cai C X, Lu T H. Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode. Anal Chim Acta, 2004, 516: 29–34

    Article  CAS  Google Scholar 

  46. Zhang M G, Gorski W. Electrochemical sensing based on redox mediation at carbon nanotubes. Anal Chem, 2005, 77:3,960–3,965

    CAS  Google Scholar 

  47. Zhang M G, Gorski W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J Am Chem Soc, 2005, 127: 2,058–2,059

    CAS  Google Scholar 

  48. Persson B, Gorton L. A comparative study of some 3,7-diaminophenoxazine derivatives and related compounds for electrocatalytic oxidation of NADH. J Electroanal Chem, 1990, 292: 115–138

    Article  CAS  Google Scholar 

  49. Ju H X, Dong L, Chen H Y. The study on the electrochemical behaviour of nile blue A modified carbon fiber microcylinder electrode. Chem J Chin Univ, 1995, 16: 1,200–1,203 (in Chinese)

    CAS  Google Scholar 

  50. Cai C X, Xue K H. Electrocatalytic oxidation of NADH at glassy carbon electrodes modified with an electropolymerized film of nile blue. Chin J Chem, 2000, 18: 182–187

    CAS  Google Scholar 

  51. Bard A J, Faulkner L R. Electrochemical Methods, Fundamental and Applications. 2nd ed, New York: John Wiley & Sons Inc, 2001, 594

    Google Scholar 

  52. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem, 1979, 101: 19–28

    Article  CAS  Google Scholar 

  53. Cai C X, Xue K H. Electrocatalysis of NADH oxidation with electropolymerized films of azure I. J Electroanal Chem, 1997, 427: 147–153

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai Chenxin.

Additional information

__________

Translated from Acta Chimica Sinica, 2007, 65(1): 1–9 [译自: 化学学报]

About this article

Cite this article

Du, P., Shi, Y., Wu, P. et al. Rapid functionalization of carbon nanotube and its electrocatalysis. Front. Chem. China 2, 369–377 (2007). https://doi.org/10.1007/s11458-007-0070-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11458-007-0070-0

Keywords

Navigation