Skip to main content
Log in

Experimental observations on the creep behaviour of frozen soil

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Constitutive models in the literature for creep of frozen soil are based on the direct use of time counted from the onset of creep. An explicit time dependence in a constitutive equation violates the principles of rational mechanics. No change in stress or temperature is allowed for during creep, using the time-based formulations. Moreover, the existing descriptions need much verification and improvement on the experimental side as well. Creep behaviour of artificially frozen sand was evaluated experimentally. Novel testing methods were used, and new insights into the creep behaviour of frozen soil were gained. Creep rate under uniaxial compression was examined with different kinds of interruptions, like unloadings or overloadings. Experimental creep curves were presented as functions of creep strain. They were brought to a dimensionless form which describes the creep universally, despite changes in stress or temperature. Possible anisotropy of frozen soil was revealed in the creep tests on cubic samples with changes of the loading direction. Using the particle image velocimetry (PIV) technique, information on the lateral deformation and the uniformity of creep were obtained. Volumetric creep of unsaturated frozen soil under isotropic compression was demonstrated to be due to the presence of air bubbles only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data availability

All laboratory data can be obtained on an e-mail request.

References

  1. Chupin O, Rechenmacher A, Abedi S (2011) Finite strain analysis of nonuniform deformation inside shear bands in sands. Int J Numer Anal Meth Geomech 36(14):1651–1666. https://doi.org/10.1002/nag.1071

    Article  Google Scholar 

  2. Cudmani R (2006) An elastic-viscoplastic model for frozen soils. In: Triantafyllidis T (ed) Numerical modelling of construction processes in geotechnical engineering for urban environment. Taylor & Francis, Milton Park, pp 177–183

    Google Scholar 

  3. Cudmani R, Yan W, Schindler U (2022) A constitutive model for the simulation of temperature-, stress- and rate-dependent behaviour of frozen granular soils. Géotechnique. https://doi.org/10.1680/jgeot.21.00012

    Article  Google Scholar 

  4. Domaschuk L, Shields D, Rahman M (1991) A model for attenuating creep of frozen sand. Cold Reg Sci Technol 19:145–161

    Article  Google Scholar 

  5. Eckardt H (1979) Creep behaviour of frozen soils in uniaxial compression tests. Eng Geol 13(1):185–195. https://doi.org/10.1016/0013-7952(79)90031-0

    Article  Google Scholar 

  6. Eckardt H (1979b) Tragverhalten gefrorener erdkörper. PhD thesis, Institut für Boden- und Felsmechanik, Universität Fridericiana in Karlsruhe, Heft Nr. 81

  7. Eckardt H (1982) Creep tests with frozen soils under uniaxial tension and uniaxial compression. In: Proceedings of the 4th Canadian permafrost conference, pp 394–405

  8. Fender K (2017) Low probability - high impact. Rail Engineer pp 34–38

  9. Fuentes Lacouture W (2014) Contributions in mechanical modelling of fill materials. Veröffentlichungen des IBF/KIT, Karlsruher Institut für Technologie, Heft, p 179

  10. Hassner T, Liu C (2016) Dense image correspondences for computer vision. Springer, Switzerland

    Book  Google Scholar 

  11. Ikeda-Fukazawa T, Fukumizu K, Kawamura K, Aoki S, Nakazawa T, Hondoh T (2005) Effects of molecular diffusion on trapped gas composition in polar ice cores. Earth Planet Sci Lett 229(3):183–192. https://doi.org/10.1016/j.epsl.2004.11.011

    Article  CAS  ADS  Google Scholar 

  12. Jones S, Johari G (1977) Effect of hydrostatic pressure on air bubbles in ice. Isotopes and impurities in snow and ice, IAHS Redbooks, Gentbrugge, Belgium 118:23–28

  13. Knittel L (2020) Verhalten granularer böden unter mehrdimensionaler zyklischer beanspruchung. Veröffentlichungen des IBF/KIT, Karlsruher Institut für Technologie, Heft, p 188

    Google Scholar 

  14. Liu Z, Yu X (2011) Coupled thermo-hydro-mechanical model for porous materials under frost action: theory and implementation. Acta Geotech 6:51–65. https://doi.org/10.1007/s11440-011-0135-6

    Article  Google Scholar 

  15. Ma L, Qi J, Yu F, Yao X (2015) Experimental study on variability in mechanical properties of a frozen sand as determined in triaxial compression tests. Acta Geotech. https://doi.org/10.1007/s11440-015-0391-y

    Article  Google Scholar 

  16. Merz K, Vrettos C (2015) Aktuelle Forschung in der Bodenmechanik, chap Materialverhalten von gefrorenem Sand aus Triaxialversuchen an kubischen Proben, pp 101–117. https://doi.org/10.1007/978-3-662-45991-1_6

  17. Orth W (1986) Gefrorener Sand als Werkstoff: Elementversuche und Materialmodell. PhD thesis, Institut für Boden- und Felsmechanik, Universität Fridericiana in Karlsruhe, Heft Nr. 100

  18. Orth W (2018) Grundbau-Taschenbuch Teil 2, John Wiley & Sons, chap 2.4 Bodenvereisung, pp 299–373. https://doi.org/10.1002/9783433607312.ch4

  19. Orth W, Meissner H (1982) Long-term creep of frozen soil in uniaxial and triaxial tests. In: Proc 3rdn Int Symp on Ground Freezing, Hanover, N.H., USA

  20. Osterkamp T, Burn C (2015) Cryosphere permafrost. In: North G, Pyle J, Zhang F (eds) Encyclopedia of atmospheric sciences, 2nd edn. Academic Press, Oxford, pp 208–216

    Chapter  Google Scholar 

  21. Srokosz P, Bujko M, Bocheńska M, Ossowski R (2021) Optical flow method for measuring deformation of soil specimen subjected to torsional shearing. Measurement 174:109064. https://doi.org/10.1016/j.measurement.2021.109064

    Article  Google Scholar 

  22. Staroszczyk R (2019) Ice mechanics for geophysical and civil engineering applications. Springer, Switzerland

    Book  Google Scholar 

  23. Staszewska K (2022) Towards a constitutive description of creep in frozen soils. Dissertation, Gdańsk University of Technology, https://doi.org/10.13140/RG.2.2.35977.11364

  24. Šuklje L (1957) The analysis of the consolidation process by the isotaches method. In: Proceedings 4th international conference on soil mechanics and foundation engineering, Butterworths Scientific Publications, pp 200–206

  25. Ting J (1981) The creep of frozen sands: qualitative and quantitative models. Massachusetts Inst of Tech Report

  26. Ting J (1983) On the nature of the minimum creep rate - time correlation for soil, ice, and frozen soil. Can Geotech J 20:176–182. https://doi.org/10.1139/t83-017

    Article  Google Scholar 

  27. Vogelsang J (2017) Untersuchungen zu den mechanismen der pfahlrammung. Veröffentlichungen des IBF/KIT, Karlsruher Institut für Technologie, Heft, p 182

    Google Scholar 

  28. White D, Take W, Bolton M (2003) Soil deformation measurement using particle image velocimetry (piv) and photogrammetry. Géotechnique 53(7):619–631. https://doi.org/10.1680/geot.2003.53.7.619

    Article  Google Scholar 

  29. Wichtmann T (2016) Soil behaviour under cyclic loading - experimental observations, constitutive description and applications. Veröffentlichungen des IBF/KIT, Karlsruher Institut für Technologie, Heft Nr 181 (habilitation)

  30. Wolfram Research Inc (2021) Mathematica

  31. Xu X, Wang Y, Zhenhua Y, Zhang H (2017) Effect of temperature and strain rate on mechanical characteristics and constitutive model of frozen helin loess. Cold Reg Sci Technol. https://doi.org/10.1016/j.coldregions.2017.01.010

    Article  Google Scholar 

  32. Yao X, Wang W, Zhang M, Wang S, Wang L (2021) Strain localization of a frozen sand under different test conditions. Cold Reg Sci Technol 183:103226. https://doi.org/10.1016/j.coldregions.2021.103226

    Article  Google Scholar 

  33. Zachert H (2015) Zur gebrauchtauglichkeit von gründungen für offschore-windenergieanlagen. Veröffentlichungen des IBF/KIT, Karlsruher Institut für Technologie, Heft, p 180

    Google Scholar 

  34. Zhou G, Zhou Y, Hu K, Wang Y, Shang X (2018) Separate-ice frost heave model for one-dimensional soil freezing process. Acta Geotech. https://doi.org/10.1007/s11440-017-0579-4

    Article  Google Scholar 

  35. Zürn J (2021) Volumetrisches Kriechverhalten in gefrorenem Sand. Karlsruher Institut für Technologie

  36. Zürn J (2022) Volumetrisches und ödometrisches Kriechverhalten in gefrorenem Sand. Master’s thesis, Karlsruher Institut für Technologie

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Staszewska.

Ethics declarations

Code availability

The relevant packages for the algebra programme mathematica are available on an e-mail request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staszewska, K., Niemunis, A. & Cudny, M. Experimental observations on the creep behaviour of frozen soil. Acta Geotech. (2024). https://doi.org/10.1007/s11440-024-02253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-024-02253-8

Keywords

Navigation