Skip to main content
Log in

Analytical solution for displacement-dependent 3D earth pressure on flexible walls of foundation pits in layered cohesive soil

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper proposes a calculation method of displacement-dependent three-dimensional (3D) earth pressure on flexible walls of the foundation pits, further considering spatial effects, layered cohesive soil, and seepage effect on earth pressure. Based on improved Coulomb’s earth pressure theory, the displacement-dependent 2D earth pressure model for flexible walls is established. By introducing the concepts of spatial influence factor and plane strain ratio (PSR), the calculation model of displacement-dependent earth pressure on flexible walls of foundation pit considering spatial effects is further proposed. And the displacement-controlled solutions of earth pressure under different boundary conditions are obtained. The proposed solution is verified by numerical simulations and reported test data of foundation pit and shows good agreement. The traditional 2D earth pressure theory underestimates and overestimates the active and passive earth pressure in the corner effect area of the excavation, respectively. Through parameter analysis and discussion, the parameter effects on 3D earth pressure are ranked as soil cohesion > soil friction angle > wall friction angles. The results of the study provide an important theoretical basis for the 3D design calculation of foundation pits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Antão AN, Santana TG, da Silva MV, Guerra NM (2016) Three-dimensional active earth pressure coefficients by upper bound numerical limit analysis. Comput Geotech 79:96–104. https://doi.org/10.1016/j.compgeo.2016.05.022

    Article  Google Scholar 

  2. Antão AN, Santana TG, Vicente da Silva M, da Costa Guerra NM (2011) Passive earth-pressure coefficients by upper-bound numerical limit analysis. Can Geotech J 48(5):767–780. https://doi.org/10.1139/t10-103

    Article  Google Scholar 

  3. Barros PLA (2006) A Coulomb-type solution for active earth thrust with seepage. Géotechnique 56(3):159–164. https://doi.org/10.1680/geot.2006.56.3.159

    Article  Google Scholar 

  4. Benz T (2007) Small-strain stiffness of soils and its numerical consequences. PhD thesis. Stuttgart, Germany, Universit¨at Stuttgart

  5. Bolton MD (1986) The strength and dilatancy of sands. Geotechnique 36(1):65–78. https://doi.org/10.1680/geot.1986.36.1.65

    Article  Google Scholar 

  6. Chen L (2014) Active earth pressure of retaining wall considering wall movement. Eur J Environ Civ Eng 18(8):910–926. https://doi.org/10.1080/19648189.2014.911121

    Article  Google Scholar 

  7. Chen YK (2001) Model test and numerical analysis of earth pressure on retaining wall. Zhejiang University (in Chinese)

  8. Clough GW, Duncan JM (1971) Finite element analyses of retaining wall behavior. J Soil Mech Found Div 97(12):1657–1673. https://doi.org/10.1061/JSFEAQ.0001713

    Article  Google Scholar 

  9. Deng C, Haigh SK (2022) Sand deformation mechanisms and earth pressures mobilised with passive rigid retaining wall movements. Géotechnique. https://doi.org/10.1680/jgeot.21.00058

    Article  Google Scholar 

  10. Dubrova GA (1963) Interaction between soils and structures. Rechnoy Transport. Moscow, pp 40–45 (in Russian).

  11. Duncan JM, Mokwa RL (2001) Passive earth pressures: theories and tests. J Geotech Geoenviron 127(3):248–257. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(248)

    Article  Google Scholar 

  12. Fan XZ, Xu CJ, Liang LJ, Chen QZ, Deng JL (2021) Analytical solution for displacement-dependent passive earth pressure on rigid walls with various wall movements in cohesionless soil. Comput Geotech 140:104470. https://doi.org/10.1016/j.compgeo.2021.104470

    Article  Google Scholar 

  13. Fang YS, Chen TJ, Wu BF (1994) Passive earth pressures with various wall movements. J Geotech Geoenviron 120(8):1307–1323. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1307)

    Article  Google Scholar 

  14. Fang YS, Ho YC, Chen TJ (2002) Passive earth pressure with critical state concept. J Geotech Geoenviron 128(8):651–659. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:8(651)

    Article  Google Scholar 

  15. Fang YS, Ishibashi I (1986) Static earth pressures with various wall movements. J Geotech Eng 112(3):317–333. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(317)

    Article  Google Scholar 

  16. Finno RJ, Blackburn JT, Roboski JF (2007) Three-dimensional effects for supported excavations in clay. J Geotec Geoenviron 133(1):30–36. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(30)

    Article  Google Scholar 

  17. Gutberlet C, Katzenbach R, Hutter K (2013) Experimental investigation into the influence of stratification on the passive earth pressure. Acta Geotech 8(5):497–507. https://doi.org/10.1007/s11440-013-0270-3

    Article  Google Scholar 

  18. Han M, Chen X, Li Z, Jia J (2023) Improved inverse analysis methods and modified apparent earth pressure for braced excavations in soft clay. Comput Geotech 159:105456. https://doi.org/10.1016/j.compgeo.2023.105456

    Article  Google Scholar 

  19. Han M, Li Z, Mei G, Bao X, Jia J, Liu L, Li Y (2022) Characteristics of subway excavation in soft soil and protective effects of partition wall on the historical building and pile foundation building. B Eng Geol Environ 81(8):1–21. https://doi.org/10.1007/s10064-022-02802-z

    Article  Google Scholar 

  20. Hu W, Zhu X, Zeng Y, Liu X, Peng C (2022) Active earth pressure against flexible retaining wall for finite soils under the drum deformation mode. Sci Rep 12(1):1–25. https://doi.org/10.1038/s41598-021-04411-4

    Article  CAS  ADS  Google Scholar 

  21. Hu Z, Yang Z, Wilkinson SP (2017) Active earth pressure acting on retaining wall considering anisotropic seepage effect. J MT Sci 14:1202–1211. https://doi.org/10.1007/s11629-016-4014-3

    Article  Google Scholar 

  22. Huder J (1972) Stability of bentonite slurry trenches with some experiences in Swiss practice. In: Proceedings 5th European conference on soil mechanics and foundation engineering, Vol 1, pp. 517–522

  23. Ji X, Ni P, Barla M, Zhao W, Mei G (2018) Earth pressure on shield excavation face for pipe jacking considering arching effect. Tunn Undergr Sp Tech 72:17–27. https://doi.org/10.1016/j.tust.2017.11.010

    Article  Google Scholar 

  24. Li HT, Guo XL, Zhou LF (2001) Calculation and application of equivalent internal friction angle. Geotech Eng World 8:34–35 ((in Chinese))

    Google Scholar 

  25. Li Z, Han M, Liu L, Li Y, Yan S (2020) Corner and partition wall effects on the settlement of a historical building near a supported subway excavation in soft soil. Comput Geotech 128:103805. https://doi.org/10.1016/j.compgeo.2020.103805

    Article  Google Scholar 

  26. Li ZW, Yang XL (2019) Active earth pressure for retaining structures in cohesive backfills with tensile strength cut-off. Comput Geotech 110:242–250. https://doi.org/10.1016/j.compgeo.2019.02.023

    Article  Google Scholar 

  27. Li ZW, Yang XL (2020) Three-dimensional active earth pressure for retaining structures in soils subjected to steady unsaturated seepage effects. Acta Geotech 15(7):2017–2029. https://doi.org/10.1007/s11440-019-00870-2

    Article  Google Scholar 

  28. Liu LL, Cai GJ, Liu SY, Chen Y (2021) Deformation characteristics and control for foundation pits in floodplain areas of Nanjing. China B Eng Geol Environ 80(7):5527–5538. https://doi.org/10.1007/s10064-021-02264-9

    Article  Google Scholar 

  29. Liu LL, Wu R, Congress SSC, Du QW, Cai GJ, Li Z (2021) Design optimization of the soil nail wall-retaining pile-anchor cable supporting system in a large-scale deep foundation pit. Acta Geotech 16(7):2251–2274. https://doi.org/10.1007/s11440-021-01154-4

    Article  Google Scholar 

  30. Lu N, Li W, Zhou J, Zhou S (2022) Calculation of displacement-dependent active earth pressure for deep excavations in soft soil. Appl Sci 12(14):7289. https://doi.org/10.3390/app12147289

    Article  CAS  Google Scholar 

  31. Lu PY, Yan C, Gu XL (2003) Sand model test on the distribution of earth pressure. China Civ Eng J 36(10):84–89 ((in Chinese))

    Google Scholar 

  32. Ma L, Li S, Ho I, Wang Q, Yu B (2020) Method to estimate lateral earth pressure on high-filled cut-and-cover tunnels. Ksce J Civ Eng 24(3):975–987. https://doi.org/10.1007/s12205-020-1060-8

    Article  Google Scholar 

  33. Mei GX, Chen R, Liu J (2017) New insight into developing mathematical models for predicting deformation-dependent lateral earth pressure. Int J Geomech 17(8):06017003. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000902

    Article  Google Scholar 

  34. Mei G, Chen Q, Song L (2009) Model for predicting displacement-dependent lateral earth pressure. Can Geotech J 46(8):969–975. https://doi.org/10.1139/T09-040

    Article  Google Scholar 

  35. Nandi R, Choudhury D (2022) Displacement-controlled approach for the analysis of embedded cantilever retaining walls with a distanced strip surcharge. Comput Geotech 151:104970. https://doi.org/10.1016/j.compgeo.2022.104970

    Article  Google Scholar 

  36. Ni P, Mangalathu S, Song L, Mei G, Zhao Y (2018) Displacement-dependent lateral earth pressure models. J Eng Mech 144(6):04018032. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001451

    Article  Google Scholar 

  37. Ni P, Mei G, Zhao Y (2017) Displacement-dependent earth pressures on rigid retaining walls with compressible geofoam inclusions: physical modeling and analytical solutions. Int J Geomech 17(6):04016132. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000838

    Article  Google Scholar 

  38. Ni P, Song L, Mei G, Zhao Y (2018) On predicting displacement-dependent earth pressure for laterally loaded piles. Soils Found 58(1):85–96. https://doi.org/10.1016/j.sandf.2017.11.007

    Article  Google Scholar 

  39. Ou CY, Chiou DC, Wu TS (1996) Three-dimensional finite element analysis of deep excavations. J Geotech Eng 122(5):337–345. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(337)

    Article  Google Scholar 

  40. Pan JJ, Zhu CB, Liu W, Fang K, Liu NW (2022) Influence of external pit width on passive earth pressure under pit-in-pit condition. B Geol Sci Technol, pp 1–8 (in Chinese)

  41. Peng SQ, Liu AH, Fan L (2009) Active earth pressure for rigid retaining walls with different displacement modes. Chinese J Geotech Eng 31(1):32–36 ((in Chinese))

    CAS  Google Scholar 

  42. Peng SQ, Li XB, Ling F, Liu AH (2012) A general method to calculate passive earth pressure on rigid retaining wall for all displacement modes. Trans Nonferr Metals Soc China 22(6):1526–1532. https://doi.org/10.1016/S1003-6326(11)61351-4

    Article  Google Scholar 

  43. Piaskowski A, Kowalewski Z (1965) Application of thixotropic clay suspensions for stability of vertical sides of deep trenches without strutting, In: Proceedings of the 6th International Conference on Soil Mechanics Foundation Engineering, pp. 526–529

  44. Qian Z, Zou J, Tian J, Pan Q (2020) Estimations of active and passive earth thrusts of non-homogeneous frictional soils using a discretisation technique. Comput Geotech 119:103366. https://doi.org/10.1016/j.compgeo.2019.103366

    Article  Google Scholar 

  45. Schmüdderich C, Tschuchnigg F, Schweiger HF (2022) Significance of flow rule for the passive earth pressure problem. Acta Geotech 17(1):81–92. https://doi.org/10.1007/s11440-021-01193-x

    Article  Google Scholar 

  46. Schmüdderich C, Tschuchnigg F, Wichtmann T (2020) Rigorous lower and upper bounds for the 3D passive earth pressure problem. Géotech Lett 10(2):100–105. https://doi.org/10.1680/jgele.19.00110

    Article  Google Scholar 

  47. Schweiger HF, Tschuchnigg F (2021) A numerical study on undrained passive earth pressure. Comput Geotech 140:104441. https://doi.org/10.1016/j.compgeo.2021.104441

    Article  Google Scholar 

  48. Shi F, Wang L, Dong F, Zhao M (2022) Probabilistic analysis on aerostatic displacement-dependent wind loads on a stream-lined box girder. Ksce J Civ Eng. https://doi.org/10.1007/s12205-022-0742-9

    Article  Google Scholar 

  49. Song F, Zhang JM, Cao GR (2015) Experimental investigation of asymptotic state for anisotropic sand. Acta Geotech 10(5):571–585. https://doi.org/10.1007/s11440-014-0357-5

    Article  Google Scholar 

  50. Tan Y, Zhu H, Peng F, Karlsrud K, Wei B (2017) Characterization of semi-top-down excavation for subway station in Shanghai soft ground. Tunn Underg Sp Tech 68:244–261. https://doi.org/10.1016/j.tust.2017.05.028

    Article  Google Scholar 

  51. Tang Y, Pei Li J, Ma Y (2018) Lateral earth pressure considering the displacement of a rigid retaining wall. Int J Geomech 18(11):06018031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001284

    Article  Google Scholar 

  52. Terzaghi K (1934) Large retaining-wall tests i Pressure of dry sand. Eng News Record 112(5):136–140

    Google Scholar 

  53. tom Wörden F, Achmus M, (2013) Numerical modeling of three-dimensional active earth pressure acting on rigid walls. Comput Geotech 51:83–90. https://doi.org/10.1016/j.compgeo.2013.02.004

    Article  Google Scholar 

  54. Wang CH, Wang Z (2017) Three-dimensional finite element analysis on earth pressure behaviour of flexible retaining structure. J Archit Civ Eng 34(2):33–41 ((in Chinese))

    Google Scholar 

  55. Wang JJ, Lin X, Chai HJ, Xu JM (2008) Coulomb-type solutions for passive earth pressure with steady seepage. Front Archit Civ Eng China 2:56–66. https://doi.org/10.1007/s11709-008-0001-2

    Article  Google Scholar 

  56. Xu J, Wang P, Huang F, Yang X (2021) Active earth pressure of 3D earth retaining structure subjected to rainfall infiltration. Eng Geol 293:106294. https://doi.org/10.1016/j.enggeo.2021.106294

    Article  Google Scholar 

  57. Ying HW, Zheng BB, Xie XY (2011) Study of passive earth pressures against translating rigid retaining walls in narrow excavations. Rock Soil Mech 32(12):3755–3762 ((in Chinese))

    Google Scholar 

  58. Yu JL, Gong XN (1999) Spatial behaviour analysis of deep excavation. Chinese J Geotec Eng 21(1):21–25 ((in Chinese))

    Google Scholar 

  59. Zhang J, Shamoto Y, Tokimatsu K (1998) Evaluation of earth pressure under any lateral deformation. Soils Found 38(1):15–33. https://doi.org/10.3208/sandf.38.15

    Article  CAS  Google Scholar 

  60. Zhang R, Goh ATC, Li Y, Hong L, Zhang W (2021) Assessment of apparent earth pressure for braced excavations in anisotropic clay. Acta Geotech 16(5):1615–1626. https://doi.org/10.1007/s11440-020-01129-x

    Article  Google Scholar 

  61. Zhang X, Wang T, Zhao C, Jiang M, Xu M, Mei G (2022) Supporting mechanism of rigid-flexible composition retaining structure in sand ground using discrete element method. Comput Geotech 151:104967. https://doi.org/10.1016/j.compgeo.2022.104967

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial and technical support provided by the National Nature Science Foundation of China (Grant Nos. 51678112 and 52278332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinqing Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Chen, X. & Jia, J. Analytical solution for displacement-dependent 3D earth pressure on flexible walls of foundation pits in layered cohesive soil. Acta Geotech. (2024). https://doi.org/10.1007/s11440-024-02226-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-024-02226-x

Keywords

Navigation