Skip to main content
Log in

A novel three-dimensional nonlinear unified failure criterion for rock materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

To study the failure (strength) regularities of rocks under complex stress states, we propose a novel three-parameter deviatoric function that includes the shape of the failure envelope on the Mohr–Coulomb (MC), Ottosen, Bigoni–Piccolroaz, and Wu–Zhang deviatoric planes. This function realizes the deviatoric plane shape of numerous classic criteria, including the Rankine, Tresca, von Mises, generalized Tresca, MC, Drucker–Prager (DP), Matsuoka–Nakai (MN), Lade–Duncan (LD), and Ottosen. On this basis, taking the nonlinear characteristics of the power function, we establish a novel 3D NUF criterion, namely MCNUF and LDNUF criteria, where the novel parameter γ is based on the basic parameters of two classical criteria, MC and LD, respectively. Based on the triaxial test data of different rocks, the proposed MCNUF and LDNUF criteria are compared with the previous criteria (the generalized nonlinear failure criterion (MNGNF), the DP and MN unified (DPMNu) criterion). Results show that: (1) the internal friction angles predicted by each criterion are equal under the same meridian plane parameters. (2) For four kinds of rock materials, the prediction performance of the proposed criteria is generally better than that of the MNGNF and DPMNu criteria. (3) The proposed criteria describe the hydrostatic stress and IPS and their coupled effect on various rock materials. (4) The 3D graphical visualization of the proposed criteria is carried out systematically, which plays a positive guiding role in enriching and perfecting the strength theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Abbo AJ, Sloan SW (1995) A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion. Comput Struct 54:427–441

    Article  MATH  Google Scholar 

  2. Al-Ajmi AM, Zimmerman RW (2005) Relation between the Mogi and Coulomb failure criterion. Int J Rock Mech Min Sci 42:431–439

    Article  Google Scholar 

  3. Al-Ajmi AM, Zimmerman RW (2006) Stability analysis of vertical boreholes using the Mogi-Coulomb failure criterion. Int J Rock Mech Min Sci 43:1200–1211

    Article  Google Scholar 

  4. Aubertin M, Li L, Simon R, Khalfi S (1999) Formulation and application of a short term strength criterion for isotropic rocks. Can Geotech J 36:947–960

    Article  Google Scholar 

  5. Bardet J (1990) Lode dependences for isotropic stress-sensitive elastoplastic materials. J Appl Mech 57:498–506

    Article  Google Scholar 

  6. Benz T, Schwab R, Kauther RA, Vermeer PAA (2008) Hoek-Brown criterion with intrinsic material strength factorization. Int J Rock Mech Min Sci 45(2):210–222

    Article  Google Scholar 

  7. Bigoni D, Piccolroaz A (2004) Yield criteria for quasibrittle and frictional materials. Int J Solids Struct 41(11–12):2855–2878

    Article  MathSciNet  MATH  Google Scholar 

  8. Borja RI (1991) Cam-clay plasticity, Part II: implicit integration of constitutive equation based on a nonlinear elastic stress predictor. Comput Methods Appl Mech Eng 88(2):225–240

    Article  MathSciNet  MATH  Google Scholar 

  9. Borja RI (2004) Cam-clay plasticity. Part V: a mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Comput Methods Appl Mech Eng 193(48–51):5301–5338

    Article  MATH  Google Scholar 

  10. Borja RI (2013) Plasticity modeling & computation. Springer, Berlin-Heidelberg

    Book  MATH  Google Scholar 

  11. Borja RI, Choo J (2016) Cam-clay plasticity, part VIII: a constitutive framework for porous materials with evolving internal structure. Comput Methods Appl Mech Eng 309:653–679

    Article  MathSciNet  MATH  Google Scholar 

  12. Borja RI, Lee SR (1990) Cam-clay plasticity, Part 1: implicit integration of elastoplastic constitutive relations. Comput Methods Appl Mech Eng 78(1):49–72

    Article  MATH  Google Scholar 

  13. Borja RI, Lin CH, Montáns FJ (2001) Cam-clay plasticity. Part IV. Implicit integration of anisotroic bounding surface model with nonlinear hyperelasticity and ellipsoidal loading function. Comput Methods Appl Mech Eng 190(26–27):3293–3323

    Article  MATH  Google Scholar 

  14. Borja RI, Sama KM, Sanz PF (2003) On the numerical integration of three-invariant elastoplastic constitutive models. Comput Methods Appl Mech Eng 192(9–10):1227–1258

    Article  MATH  Google Scholar 

  15. Bryant EC, Bennett KC, Miller NA, Misra A (2022) Multiscale plasticity of geomaterials predicted via constrained optimization-based granular micromechanics. Int J Numer Anal Meth Geomech 46(4):739–778

    Article  Google Scholar 

  16. Bryant EC, Miller NA, Bennett KC (2023) An extended three-field principle to scale-bridge the granular micromechanics of polymer-bonded particulate materials. Comput Methods Appl Mech Eng 416:116315

    Article  MathSciNet  MATH  Google Scholar 

  17. Bryant EC, Sun WC (2019) A micromorphically regularized Cam-clay model for capturing size-dependent anisotropy of geomaterials. Comput Methods Appl Mech Eng 354:56–95

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen WF, Saleeb AF (1982) Constitutive equations for engineering materials: elasticity and modeling. John Wiley and Sons, New York

    MATH  Google Scholar 

  19. Costamagna R, Bruhns O (2007) A four-parameter criterion for failure of geomaterials. Eng Struct 29(3):461–468

    Article  Google Scholar 

  20. Couture C, Bésuelle P (2023) Three-invariant model and bifurcation analysis of deformation bands for a sandstone subjected to true triaxial loading paths. Acta Geotechnica 18:3421–3434

    Article  Google Scholar 

  21. Desai CS, Somasundaram S, Frantziskonis G (1986) A hierarchical approach for constitutive modeling of geologic materials. Int J Numer Anal Meth Geomech 10(3):225–257

    Article  MATH  Google Scholar 

  22. DiGiovanni AA, Fredrich JT, Holcomb DJ et al (2007) Microscale damage evolution in compacting sandstone. Geol Soc Lond Spec Publ 289(1):89–103

    Article  Google Scholar 

  23. Drucker DC (1959) A definition of stable inelastic material. J Appl Mech 26:101–106

    Article  MathSciNet  MATH  Google Scholar 

  24. Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10:157–165

    Article  MathSciNet  MATH  Google Scholar 

  25. Du XL, Lu DC, Gong QM, Zhao M (2010) Nonlinear unified strength criterion for concrete under three-dimensional stress states. J Eng Mech ASCE 136:51–59

    Article  Google Scholar 

  26. Feng XT, Wang Z, Zhou Y, Yang CX, Pan PZ, Kong R (2021) Modelling three-dimensional stress-dependent failure of hard rocks. Acta Geotechnica 16:1647–1677

    Article  Google Scholar 

  27. Gaziev E, Alberro J (1998) Rock deformation in a multiaxial compression state. Int J Rock Mech Min Sci 4(35):626–627

    Article  Google Scholar 

  28. Gowd TN, Rummel F (1980) Effect of confining pressure on the fracture behaviour of a porous rock. Int J Rock Mech Min Sci Geomech Abstr 17(4):225–229

    Article  Google Scholar 

  29. Grifith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond (Ser A) 221:163–198

    Article  Google Scholar 

  30. He YQ, Liao HJ, Wu W, Wang S (2023) Hypoplastic modeling of inherent anisotropy in normally and overconsolidated clays. Acta Geotechnica. https://doi.org/10.1007/s11440-023-01923-3

    Article  Google Scholar 

  31. Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Geoenviron Eng 106(GT9):1013–1035

    Google Scholar 

  32. Hoek E, Brown ET (2019) The Hoek-Brown failure criterion and GSI–2018 edition. J Rock Mech Geotech 11(3):445–463

    Article  Google Scholar 

  33. Ingraham MD, Issen KA, Holcomb DJ (2013) Response of Castlegate sandstone to true triaxial states of stress. J Geophys Res Solid Earth 118(2):536–552

    Article  Google Scholar 

  34. Jiang J, Pietruszczak S (1988) Convexity of yield loci for stress sensitive materials. Comput Geotech 5(1):51–63

    Article  Google Scholar 

  35. Kadlíček T, Janda T, Šejnoha M, Mašín D, Najser J, Beneš Š (2022) Automated calibration of advanced soil constitutive models. Part II: hypoplastic clay and modified Cam-Clay. Acta Geotechnica 17:3439–3462

    Article  Google Scholar 

  36. Kotsovos MD (1979) A mathematical description of the strength properties of concrete under generalized stress. Mag Concr Res 31:151–158

    Article  Google Scholar 

  37. Krenk S (1996) Family of invariant stress surfaces. J Eng Mech 122:201–208

    Article  Google Scholar 

  38. Lade PV (1977) Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int J Solids Struct 13:1019–1035

    Article  MATH  Google Scholar 

  39. Lade PV, Duncan JM (1975) Elastoplastic stress–strain theory for cohesionless soil. J Geotech Eng Div 101(10):1037–1053

    Article  Google Scholar 

  40. Lee DH, Juang CH, Lin HM, Yeh SH (2002) Mechanical behavior of Tien-Liao mudstone in hollow cylinder tests. Can Geotech J 39:744–756

    Article  Google Scholar 

  41. Lin FB, Bažant ZP (1986) Convexity of smooth yield surface of frictional material. J Eng Mech ASCE 112(11):1259–1262

    Article  Google Scholar 

  42. Liu M, Gao Y, Liu H (2012) A nonlinear Drucker-Prager and Matsuoka-Nakai unified failure criterion for geomaterials with separated stress invariants. Int J Rock Mech Min Sci 50:1–10

    Article  Google Scholar 

  43. Lü X, Huang M, Andrade JE (2016) Strength criterion for cross-anisotropic sand under general stress conditions. Acta Geotechnica 11:1339–1350

    Article  Google Scholar 

  44. Matsuoka H, Nakai T (1982) A new failure criterion for soils in three-dimensional stresses. In: Proceedings of international union of theoretical and applied mechanics (IUTAM) symposium on deformation and failure of granular materials, Delft, pp 253–263

  45. Matsuoka H, Nakai T (1974) Stress-deformation and strength characteristics of soil under three different principal stresses. Proc Jpn Soc Civ Eng 232:59–70

    Article  Google Scholar 

  46. Mises RV (1913) “Mechanik der festen Körper im plastisch-deformablen Zustand” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 1913:582–592

    MATH  Google Scholar 

  47. Mogi K (1967) Effect of the intermediate principal stress on rock failure. J Geophys Res 72(20):5117–5131

    Article  Google Scholar 

  48. Mogi K (2007) Experimental rock mechanics. Taylor & Francis, London

    Google Scholar 

  49. Mohr O (1900) Welche Umstande bedingen die Elastizitatsgrenze und den bruch eines materials. Z Ver Dtsch Ing 44:1524–1530

    MATH  Google Scholar 

  50. Mortara G (2008) A new yield and failure criterion for geomaterials. Géotechnique 58(2):125–132

    Article  Google Scholar 

  51. Nayak GC, Zienkiewicz OC (1972) Convenient form of stress invariants for plasticity. J Struct Div ASCE 98:949–954

    Article  Google Scholar 

  52. Ottosen NS (1977) A failure criterion for concrete. J Eng Mech Div ASCE 103:527–535

    Article  Google Scholar 

  53. Paterson MS (1958) Experimental deformation and faulting in Wombeyan marble. Geol Soc Am Bull 69(4):465–476

    Article  Google Scholar 

  54. Peng C, Wu W, Yu HS, Wang C (2015) A SPH approach for large deformation analysis with hypoplastic constitutive model. Acta Geotechnica 10:703–717

    Article  Google Scholar 

  55. Piccolroaz A, Bigoni D (2009) Yield criteria for quasibrittle and frictional materials: a generalization to surfaces with corners. Int J Solids Struct 46(20):3587–3596

    Article  MATH  Google Scholar 

  56. Singh M, Raj A, Singh B (2011) Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. Int J Rock Mech Min Sci 48(4):546–555

    Article  Google Scholar 

  57. Su D, Wang ZL, Xing F (2009) A two-parameter expression for failure surfaces. Comput Geotech 36(3):517–524

    Article  Google Scholar 

  58. Takahashi M, Koide H (1989) Effect of intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000 m. In: Maury V, Fourmaintraux D (eds) Rock at great depth. Balkema Press, Rotterdam, pp 19–26

    Google Scholar 

  59. Tresca H (1869) Mémoire sur l’écoulement des corps solides. Imprimerie impériale, Paris, France

  60. Wang S, Wu W (2021) A simple hypoplastic model for overconsolidated clays. Acta Geotechnica 16(1):21–29

    Article  Google Scholar 

  61. Wang S, Wu W (2021) Validation of a simple hypoplastic constitutive model for overconsolidated clays. Acta Geotechnica 16(1):31–41

    Article  Google Scholar 

  62. Wang S, Wu W, Cui D (2021) On mechanical behaviour of clastic soils: numerical simulations and constitutive modelling. Geotechnique 72(8):706–721

    Article  Google Scholar 

  63. Wang S, Wu W, Peng C, He XZ, Cui DS (2018) Numerical integration and FE implementation of a hypoplastic constitutive model. Acta Geotechnica 13(6):1265–1281

    Article  Google Scholar 

  64. Wang S, Wu W, Yin ZY, Peng C, He XZ (2018) Modelling the time-dependent behaviour of granular material with hypoplasticity. Int J Numer Anal Methods Geomech 42(12):1331–1345

    Article  Google Scholar 

  65. Wang S, Wu W, Zhang D, Kim JR (2020) Extension of a basic hypoplastic model for overconsolidated clays. Comput Geotech 123:103486

    Article  Google Scholar 

  66. Wawersik WR, Fairhurst C (1970) A study of brittle rock fracture in laboratory compression experiments. Int J Rock Mech Min Sci Geomech Abstr 7(5):561–575

    Article  Google Scholar 

  67. Wen T, Tang H, Huang L, Wang YK (2021) An empirical relation for parameter mi in the Hoek-Brown criterion of anisotropic intact rocks with consideration of the minor principal stress and stress-to-weak-plane angle. Acta Geotechnica 16:551–567

    Article  Google Scholar 

  68. Wiebols GA, Cook NGW (1968) An energy criterion for the strength of rock in polyaxial compression. Int J Rock Mech Min Sci Geomech Abstr 5(6):529–549

    Article  Google Scholar 

  69. Willam KJ (1975) Constitutive model for the triaxial behaviour of concrete. Proc Int Assoc Bridge Struct Eng 19:1–30

    Google Scholar 

  70. Wu S, Li LP, Zhang XP (2021) Rock mechanics. Higher Education Press, Beijing

    Google Scholar 

  71. Wu W, Lin J, Wang X (2017) A basic hypoplastic constitutive model for sand. Acta Geotechnica 12(6):1373–1382

    Article  Google Scholar 

  72. Wu S, Zhang S, Guo C et al (2017) A generalized nonlinear failure criterion for frictional materials. Acta Geotechnica 12(6):1353–1371

    Article  Google Scholar 

  73. Wu SC, Zhang SH, Zhang G (2018) Three-dimensional strength estimation of intact rocks using a modified Hoek-Brown criterion based on a new deviatoric function. Int J Rock Mech Min Sci 107:181–190

    Article  Google Scholar 

  74. Wu GQ, Zhao H, Zhao MH, Duan LL (2023) Ultimate bearing capacity of strip footings lying on Hoek-Brown slopes subjected to eccentric load. Acta Geotechnica 18:1111–1124

    Article  Google Scholar 

  75. Yao Y, He G, Liu L, Zhang JM, Luo T (2022) A basic constitutive model for sands. Acta Geotechnica 17:2021–2027

    Article  Google Scholar 

  76. Yao Y, Hu J, Zhou A, Zhou A et al (2015) Unified strength criterion for soils, gravels, rocks, and concretes. Acta Geotechnica 10(6):749–759

    Article  Google Scholar 

  77. You MQ (2009) True-triaxial strength criteria for rock. Int J Rock Mech Min Sci 46(1):115–127

    Article  Google Scholar 

  78. Yu MH (1983) Twin shear stress yield criterion. Int J Mech Sci 25(1):71–74

    Article  Google Scholar 

  79. Yu MH (2002) Advances in strength theories for materials under complex stress state in the 20th Century. Appl Mech Rev ASME 55(3):169–218

    Article  Google Scholar 

  80. Yu MH, Zan YW, Zhao J, Yoshimine M (2002) A unified strength criterion for rock material. Int J Rock Mech Min Sci 39:975–989

    Article  Google Scholar 

  81. Yuan WH, Wang HC, Zhang W, Dai BB, Liu K, Wang Y (2021) Particle finite element method implementation for large deformation analysis using Abaqus. Acta Geotechnica 16:2449–2462

    Article  Google Scholar 

  82. Zhang Y, Bernhardt M, Biscontin G, Luo R, Lytton RL (2015) A generalized Drucker-Prager viscoplastic yield surface model for asphalt concrete. Mater Struct 48:3585–3601

    Article  Google Scholar 

  83. Zhang SH, Wu SC, Zhang G (2020) Strength and deformability of a low-porosity sandstone under true triaxial compression conditions. Int J Rock Mech Min 127:104204

    Article  Google Scholar 

  84. Zhong JH, Yang XL (2022) Pseudo-dynamic stability of rock slope considering Hoek-Brown strength criterion. Acta Geotechnica 17:2481–2494

    Article  Google Scholar 

  85. Zienkiewicz OC (1979) The finite elemnt method in engineering science. Mcgraw-Hill, London, pp 67–82

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51934003), Yunnan innovation team (202105AE160023), Yunnan Major Scientific and Technological Projects (202202AG050014, 202102AF080001), Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People’s Republic of China, and Yunnan Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area. The authors thank the anonymous reviewer for their critical comments that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunchuan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of smoothness of the novel three-parameter deviatoric function

The first and second derivatives of Eq. (15) are expressed as:

$$g^{\prime}\left( {\theta_{\sigma } } \right) = \gamma \sin 3\theta_{\sigma } \frac{{\sin \left( {\frac{\pi }{6}\alpha { + }\beta { + }\frac{1}{3}\cos^{ - 1} \gamma } \right)\cos \left[ {\frac{\pi }{6}\alpha + \frac{1}{3}\cos^{ - 1} \left( {\gamma \cos 3\theta_{\sigma } } \right)} \right]}}{{\sin^{2} \left[ {\frac{\pi }{6}\alpha + \frac{1}{3}\cos^{ - 1} \left( {\gamma \cos 3\theta_{\sigma } } \right)} \right]\sqrt {1 - \gamma^{2} \cos^{2} 3\theta_{\sigma } } }}$$
(32)
$$\begin{aligned} g^{\prime \prime } \left( {\theta_{\sigma } } \right) = & \left\{ {\frac{{3\gamma \cos 3\theta_{\sigma } \left( {1 - \gamma^{2} \cos^{2} 3\theta_{\sigma } - \gamma \sin^{2} 3\theta_{\sigma } } \right)\cos \left[ {\frac{\pi }{6}\alpha + \frac{1}{3}\cos^{ - 1} \left( {\gamma \cos 3\theta_{\sigma } } \right)} \right]}}{{\sin^{2} \left[ {\frac{\pi }{6}\alpha + \frac{1}{3}\cos^{ - 1} \left( {\gamma \cos 3\theta_{\sigma } } \right)} \right]\left( {1 - \gamma^{2} \cos^{2} 3\theta_{\sigma } } \right)^{\frac{3}{2}} }}} \right. \\ & - \left. {\gamma^{2} \sin^{2} 3\theta_{\sigma } \frac{{1{ + }\cos^{2} \left[ {\frac{\pi }{6}\alpha + \frac{1}{3}\cos^{ - 1} \left( {\gamma \cos 3\theta_{\sigma } } \right)} \right]}}{{\sin^{3} \left[ {\frac{\pi }{6}\alpha + \frac{1}{3}\cos^{ - 1} \left( {\gamma \cos 3\theta_{\sigma } } \right)} \right]\left( {1 - \gamma^{2} \cos^{2} 3\theta_{\sigma } } \right)}}} \right\}\sin \left( {\frac{\pi }{6}\alpha { + }\beta { + }\frac{1}{3}\cos^{ - 1} \gamma } \right) \\ \end{aligned}$$
(33)

Equation (32) shows that sin3θσ = 0 when γ ≠ 1, θσ = 0°, and θσ = 60°. g′(0°) = 0 and g′(60°) = 0. Research shows that the novel three-parameter deviatoric plane function satisfies the smoothness requirement at the corner point.

Appendix B: Proof of convexity of the novel three-parameter deviatoric function

2.1 Appendix B.1: Determination of the upper limit of parameter α

By substituting Eqs. (15), (32), and (33) into Eq. (5), we obtain the following:

$$\sin^{2} \left[ {\frac{\pi }{6}\alpha + \beta + \frac{1}{3}\cos^{ - 1} \gamma } \right]\left( {1 - \gamma^{2} } \right)\left\{ {\frac{{\sin \left[ {\frac{\pi }{6}\alpha + \frac{1}{3}\cos^{ - 1} \left( {\gamma \cos 3\theta_{\sigma } } \right)} \right]\left( {1 - \gamma^{2} \cos^{2} 3\theta_{\sigma } } \right)^{\frac{3}{2}} }}{{\sin^{3} \left[ {\frac{\pi }{6}\alpha + \frac{1}{3}\cos^{ - 1} \left( {\gamma \cos 3\theta_{\sigma } } \right)} \right]\left( {1 - \gamma^{2} \cos^{2} 3\theta_{\sigma } } \right)^{\frac{5}{2}} }} - } \right.$$
$$\left. {\frac{{\left( {3\gamma^{3} \cos^{3} 3\theta_{\sigma } - 3\gamma \cos 3\theta_{\sigma } } \right)\cos \left[ {\frac{\pi }{6}\alpha + \frac{1}{3}\cos^{ - 1} \left( {\gamma \cos 3\theta_{\sigma } } \right)} \right]}}{{\sin^{3} \left[ {\frac{\pi }{6}\alpha + \frac{1}{3}\cos^{ - 1} \left( {\gamma \cos 3\theta_{\sigma } } \right)} \right]\left( {1 - \gamma^{2} \cos^{2} 3\theta_{\sigma } } \right)^{\frac{5}{2}} }}} \right\} \ge 0$$
(34)

When γ ∈ [0,1), there is (1-γ2) > 0 and \(\left( {1 - \gamma^{2} \cos^{2} 3\theta_{\sigma } } \right) > 0\). According to the inequality's basic properties, both sides multiply (or divide) the same number greater than zero. The unequal direction remains unchanged. Therefore, both ends of Eq. (34) are divided by (1-γ2) and then multiplied by \(\left( {1 - \gamma^{2} \cos^{2} 3\theta_{\sigma } } \right)\) for simplification to obtain:

$$1 - \frac{{3\gamma \cos 3\theta_{\sigma } \cos \left[ {\frac{\pi }{6}\alpha + \frac{1}{3}\cos^{ - 1} \left( {\gamma \cos 3\theta_{\sigma } } \right)} \right]}}{{\left( {1 - \gamma^{2} \cos^{2} 3\theta_{\sigma } } \right)^{\frac{1}{2}} \sin \left[ {\frac{\pi }{6}\alpha + \frac{1}{3}\cos^{ - 1} \left( {\gamma \cos 3\theta_{\sigma } } \right)} \right]}} \ge 0$$
(35)

Let \(\cos^{ - 1} \left( {\gamma \cos 3\theta_{\sigma } } \right) = \lambda\) and γ ∈ [0,1]; Eq. (35) is further rewritten as:

$$\sin \lambda \sin \left( {\frac{\pi }{6}\alpha + \frac{1}{3}\lambda } \right) - 3\cos \lambda \cos \left( {\frac{\pi }{6}\alpha + \frac{1}{3}\lambda } \right) \ge 0$$
(36)

According to the trigonometric function, Eq. (36) is simplified as:

$$\cos \left( {\frac{\pi }{6}\alpha - \frac{2}{3}\lambda } \right) + 2\cos \left( {\frac{\pi }{6}\alpha + \frac{4}{3}\lambda } \right) \le 0$$
(37)

where \(\lambda \in \left[ {\cos^{ - 1} \gamma ,\pi - \cos^{ - 1} \gamma } \right]\).

According to the trigonometric function and assuming that k = 2/3δ, Eq. (37) is transformed into:

$$\frac{\sin k - 2\sin 2k}{{\cos k + 2\cos 2k}}\sin \frac{\pi }{6}\alpha + \cos \frac{\pi }{6}\alpha \ge 0$$
(38)

where \(k \in \left[ {\frac{2}{3}\cos^{ - 1} \gamma ,\frac{2}{3}\left( {\pi - \cos^{ - 1} \gamma } \right)} \right]\).

According to the double-angle formula of a trigonometric function, Eq. (38) is further simplified as:

$$\frac{{\sin k\left( {1 - 4\cos k} \right)}}{{4\cos^{2} k + \cos k - 2}}\sin \frac{\pi }{6}\alpha + \cos \frac{\pi }{6}\alpha \ge 0$$
(39)

The parameter α in Eq. (39) is solved to obtain:

$$\alpha \ge - \frac{6}{\pi }\tan^{ - 1} \left[ {\frac{{4\cos^{2} k + \cos k - 2}}{{\sin k\left( {1 - 4\cos k} \right)}}} \right]$$
(40)

The domain of the function y = arctan(x) is (-∞, + ∞), the range is \(\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)\), and it is a monotone increasing function in the domain.

When the value range of k is \(k \in \left[ {\frac{2}{3}\cos^{ - 1} \gamma ,\frac{2}{3}\left( {\pi - \cos^{ - 1} \gamma } \right)} \right]\), the value range at the right end of Eq. (40) can be calculated as [-3,1]. The lower bound value range of α is:

$$\alpha \ge 1$$
(41)

The research shows that when α ≥ 1, the novel three-parameter deviatoric plane function (Eq. (15)) satisfies the convexity requirement.

2.2 Appendix B.2: Determination of the lower limit of parameter α

Herein, the upper limit of α is solved by using the aspect ratio K ∈ [0.5,1], β = π and γ ∈ [0,1].

  1. (1)

    When K = 0.5, γ = 0, Eq. (15) is simplified as:

    $$0.5\sin \left( {\frac{\pi }{6}\alpha { + }\frac{\pi }{6}} \right) = \sin \left( {\frac{\pi }{6}\alpha + \frac{\pi }{6}} \right)$$
    (42)

That is

$$\frac{\pi }{6}\alpha { + }\frac{\pi }{6}{ = }z\pi ,z = 1,2, \ldots ,n$$
(43)

Solving Eq. (43), we obtain:

$$\alpha = 5,\;11,\; \ldots ,\;\left( {6n - 1} \right)$$
(44)
  1. (2)

    When K = 0.5, γ = 1, Eq. (15) can be simplified as:

    $$0.5\sin \left( {\frac{\pi }{6}\alpha } \right) = \sin \left( {\frac{\pi }{6}\alpha + \frac{\pi }{3}} \right)$$
    (45)

Based on the trigonometric function, Eq. (45) can be simplified as:

$$\frac{\sqrt 3 }{2}\cos \frac{\pi }{6}\alpha = 0$$
(46)

That is

$$\frac{\pi }{6}\alpha { = }z\frac{\pi }{2},z = 1,2, \ldots ,n$$
(47)

Solving Eq. (47), we obtain the following:

$$\alpha = 3,\;6,\; \ldots ,\;3n$$
(48)
  1. (3)

    When K = 1.0, γ = 0, Eq. (15) can be simplified as:

    $$\sin \left( {\frac{\pi }{6}\alpha { + }\frac{\pi }{6}} \right) = \sin \left( {\frac{\pi }{6}\alpha + \frac{\pi }{6}} \right)$$
    (49)

Solving Eq. (49), we obtain the following:

$$\alpha = 2,\;3,\; \ldots ,\;n$$
(50)

When K = 1.0, γ = 1.0, Eq. (15) can be simplified as:

$$\sin \left( {\frac{\pi }{6}\alpha } \right) = \sin \left( {\frac{\pi }{6}\alpha + \frac{\pi }{3}} \right)$$
(51)

Based on the trigonometric function, Eq. (51) can be simplified as follows:

$$\sin \left( {\frac{\pi }{6}\alpha - \frac{\pi }{3}} \right) = 0$$
(52)

That is

$$\frac{\pi }{6}\alpha - \frac{\pi }{3} = z\pi ,z = 0,1, \ldots ,n$$
(53)

Solving Eq. (53), we obtain the following:

$$\alpha = 2,\;8,\; \ldots ,\;\left( {6n + 2} \right)$$
(54)

In summary, the upper limit value of the parameter α is:

$$\alpha \le 2$$
(55)

Appendix C: Influence of different meridian plane functions on the failure criterion

3.1 Appendix C.1: Influence of the meridian plane function on failure criterion for the Yamaguchi marble true triaxial test

3.1.1 Appendix C.1.1 Meridian plane of the linear function passing through the I 1 negative semi-axis

Based on Table 2, the test data at θσ = 0° are used for fitting, and d = 184.4 MPa is obtained. From Eq. (22), δt = 138.3 MPa and ξt = 79.8 MPa. Based on Sect. 5.1, the aspect ratio K of the Yamaguchi marble material is 0.8252. The meridian plane parameters of the MCNUF and LDNUF criteria are Nf = 0.2416, δt = 138.3 MPa, and n = 1 (see Fig. 

Fig. 25
figure 25

Predicted results of the MCNUF and LDNUF criteria under the I1 negative axis linear meridian plane and the Yamaguchi marble true triaxial test data: a best-fit envelope of the meridian plane, b deviatoric plane failure envelope of the MCNUF criterion, c deviatoric plane failure envelope of the LDNUF criterion, d 3D space failure envelope surface of the MCNUF criterion and d 3D space failure envelope surface of the LDNUF criterion

25a).

The deviatoric plane parameters of the MCNUF and the LDNUF criteria are determined according to the meridian plane parameters and the aspect ratio. The deviatoric plane parameters of the MCNUF criterion are α = 1.6007, β = π or − π, γMC = 0.9557, and φ = 31.3°. The deviatoric plane parameters of the LDNUF criterion are α = 1.2304, β = π or − π, γLD = 0.6155, and φ = 31.3°.

Similarly, the strength parameters of MNGNF criterion are ω = 0.2416, β = 138.3 MPa, n = 1, α = 1.2046, A = 0.7666, and φ = 31.3°. The strength parameters of the DPMNu criterion are A = 0.5918, ξt = 79.8 MPa, n = 1, ω = 0.7666, α = 0.4075, and φ = 31.3°. The prediction results of the MCNUF and LDNUF criteria (when the linear meridian plane passes through the I1 negative semi-axis and the Yamaguchi marble true triaxial test data) are shown in Fig. 25, and the prediction results of the MNGNF and DPMNu criteria are shown in Fig. 

Fig. 26
figure 26

Predicted results of the MNGNF and DPMNu criteria under the I1 negative axis linear meridian plane and the Yamaguchi marble true triaxial test data: a deviatoric plane failure envelope of the MNGNF criterion and b deviatoric plane failure envelope of the DPMNu criterion

26.

3.1.2 Appendix C.1.2 Meridian plane of the power function passing through the origin

On the meridian plane (see Fig. 

Fig. 27
figure 27

Prediction results of the MCNUF and LDNUF criteria under the power function meridian plane passing through the origin point and the Yamaguchi marble true triaxial test data: a best-fit envelope of the meridian plane, b deviatoric plane of the MCNUF criterion, c deviatoric plane of the LDNUF criterion, d 3D space failure envelope surface of the MCNUF criterion and d 3D space failure envelope surface of the LDNUF criterion

27a), the parameters of the MCNUF and LDNUF criteria are Nf = 6.0236, δt = 0 MPa, and n = 1, respectively. The aspect ratio is K = 0.8252. The deviatoric plane parameters of the MCNUF and LDNUF criteria are determined according to the meridian plane parameters and the aspect ratio, where the deviatoric plane parameters of the MCNUF criterion are as follows: when I1 = 470.1 MPa, α = 1.6155, β = π or − π, γMC = 0.9678 and φ = 26.2°. When I1 = 427.0 MPa, α = 1.6131, β = π or − π, γMC = 0.9659 and φ = 27.1°. When I1 = 356.6 MPa, α = 1.6083, β = π or − π, γMC = 0.9621 and φ = 28.7°. When I1 = 243.4 MPa, α = 1.5973, β = π or − π, γMC = 0.9527 and φ = 32.5°. The deviatoric plane parameters of the LDNUF criterion are: when I1 = 470.1 MPa, α = 1.0934, β = π or − π, γLD = 0.5250 and φ = 26.2°. When I1 = 427.0 MPa, α = 1.1187, β = π or − π, γLD = 0.5403 and φ = 27.1°. When I1 = 356.6 MPa, α = 1.1649, β = π or − π, γLD = 0.5698 and φ = 28.7°. When I1 = 243.4 MPa, α = 1.2573, β = π or − π, γLD = 0.6357 and φ = 32.5°.

Similarly, the meridian plane parameters of the MNGNF criterion are ω = 6.0236, β = 0 MPa, and n = 0.6478. The deviatoric plane parameters of the MNGNF criterion are as follows: when I1 = 470.1 MPa, α = 1.1571, A = 0.6813, and φ = 26.2°. When I1 = 427.0 MPa, α = 1.1661, A = 0.6965 and φ = 27.1°. When I1 = 356.6 MPa, α = 1.1822, A = 0.7249 and φ = 28.7°. When I1 = 243.4 MPa, α = 1.2137, A = 0.7842 and φ = 32.5°. The meridian plane parameters of the DPMNu criterion are ξt = 0 MPa, A = 12.1594, and n = 0.6478. The deviatoric plane parameters of the DPMNu criterion are as follows: when ξ = 271.4 MPa, ω = 0.6813, α = 0.3193 and φ = 21.6°. When ξ = 246.5 MPa, ω = 0.6965, α = 0.3362 and φ = 27.1°. When ξ = 205.9 MPa, ω = 0.7249, α = 0.3662 and φ = 28.7°. When ξ = 140.5 MPa, ω = 0.7842, α = 0.4240 and φ = 32.5°.

The prediction results of the MCNUF and LDNUF criteria under the power function meridian plane passing through the origin point and the Yamaguchi marble true triaxial test data are shown in Fig. 27. The prediction results of the MNGNF and DPMNu criteria are shown in Fig. 

Fig. 28
figure 28

Prediction results of the MNGNF and DPMNu criteria under the power function meridian plane passing through the origin point and the Yamaguchi marble true triaxial test data: a deviatoric plane of the MNGNF criterion and b deviatoric plane of the DPMNu criterion

28.

3.2 Appendix C.2: Influence of the meridian plane function on failure criterion under the Laxiwa granite true triaxial test

3.2.1 Appendix C.2.1 Meridian plane of the power function passing through the I 1 negative semi-axis

Section 5.2 shows that d = 143.11 MPa (mean value), K = 0.7587 (maximum value), δt = 107.33 MPa and ξt = 61.97 MPa. The meridian plane parameters of the MCNUF criterion and LDNUF criteria (see Fig. 

Fig. 29
figure 29

Prediction results of the MCNUF and LDNUF criteria under the power function meridian plane passing through the I1 negative semi-axis and the Laxiwa granite true triaxial test data: a best-fit envelope of the meridian plane, b deviatoric plane of the MCNUF criterion, c deviatoric plane of the LDNUF criterion, d 3D space failure envelope surface of the MCNUF criterion and d 3D space failure envelope surface of the LDNUF criterion

29a) are Nf = 1.2407, δt = 0 MPa, and n = 0.8352, respectively.

According to the meridian plane parameters and the aspect ratio, the deviatoric plane parameters of the MCNUF criterion can be calculated as follows: when I1 = 479.95 MPa, α = 1.4332, β = π or − π, γMC = 0.9537 and φ = 32.1°. When I1 = 390.06 MPa, α = 1.4299, β = π or − π, γMC = 0.9516 and φ = 32.9°. When I1 = 299.99 MPa, α = 1.4258, β = π or − π, γMC = 0.9489 and φ = 33.9°. When I1 = 224.99 MPa, α = 1.4215, β = π or − π, γMC = 0.9461 and φ = 35.0°. The meridian plane parameters of the LDNUF criterion are as follows: when I1 = 479.95 MPa, α = 0.9761 (1 in this paper), β = π or − π, γLD = 0.6295 and φ = 32.1°. When I1 = 299.99 MPa, α = 0.9986 (1 in this paper), β = π or − π, γLD = 0.6433 and φ = 32.9°. When I1 = 299.99 MPa, α = 1.0253, β = π or − π, γLD = 0.6602 and φ = 33.9°. When I1 = 224.99 MPa, α = 1.10521, β = π or − π, γLD = 0.6776 and φ = 35.0°.

Similarly, the meridian plane parameters of the MNGNF criterion are ω = 1.2407, β = 107.33 MPa, and n = 0.8352, respectively. The deviatoric plane parameters of the MNGNF criterion are as follows: when I1 = 479.95 MPa, α = 1.0983, A = 0.7788 and φ = 32.1°. When I1 = 390.06 MPa, α = 1.1063, A = 0.7907 and φ = 32.9°. When I1 = 299.99 MPa, α = 1.2256, A = 0.8047 and φ = 33.9°. When I1 = 224.99 MPa, α = 1.1249, A = 0.8188 and φ = 35.0°. The meridian plane parameters of the DPMNu criterion are ξt = 61.97 MPa, A = 2.7761, n = 0.8352. The deviatoric plane parameters of the DPMNu criterion are as follows: when ξ = 277.10 MPa, ω = 0.7447, α = 0.1980, and φ = 32.1°. When ξ = 225.20 MPa, ω = 0.7907, α = 0.2132 and φ = 32.9°. When ξ = 173.20 MPa, ω = 0.8047, α = 0.2308 and φ = 33.9°. When ξ = 224.99 MPa, ω = 0.8188, α = 0.2482 and φ = 35.0°.

The prediction results of the MCNUF and LDNUF criteria for the power function meridian plane passing through the I1 negative semi-axis and the Laxiwa granite true triaxial test data are shown in Fig. 29, and the prediction results of the MNGNF and DPMNu criteria are shown in Fig. 

Fig. 30
figure 30

Prediction results of the MNGNF and DPMNu criteria for the power function meridian plane passing through the I1 negative semi-axis and the Laxiwa granite true triaxial test data: a deviatoric plane of the MNGNF criterion and b deviatoric plane of the DPMNu criterion

30.

3.2.2 Appendix C.2.2 Meridian plane of the power function passing through the origin

This paper considers the aspect ratio as K = 0.7587 (maximum value). The meridian plane parameters of the MCNUF criterion (see Fig. 

Fig. 31
figure 31

Prediction results of the MCNUF criterion under the power function meridian plane passing through the origin point and Laxiwa granite true triaxial test data: a best-fit envelope of the meridian plane, b deviatoric plane of the MCNUF criterion and c 3D space failure envelope surface of the MCNUF criterion

31a) are Nf = 8.1028, δt = 0 MPa, and n = 0.6331. According to the meridian plane parameters and the aspect ratio, the deviatoric plane parameters of the MCNUF criterion can be calculated: when I1 = 479.95 MPa, α = 1.4421, β = π or − π, γMC = 0.9592, and φ = 29.9°. When I1 = 390.06 MPa, α = 1.4334, β = π or − π, γMC = 0.9538 and φ = 32.0°. When I1 = 299.99 MPa, α = 1.4214, β = π or − π, γMC = 0.9460 and φ = 35.0°. When I1 = 224.99 MPa, α = 1.4069, β = π or − π, γMC = 0.9363 and φ = 38.6°. Among them, the deviatoric plane of the LDNUF criterion does not satisfy the convexity requirement, and it is not analyzed in this paper.

Similarly, the meridian plane parameters of the MNGNF criterion are ω = 8.1028, β = 0 MPa, and n = 0.6331, respectively. The deviatoric plane parameters of the MNGNF criterion are as follows: when I1 = 479.95 MPa, α = 1.0749, A = 0.7447 and φ = 29.9°. When I1 = 390.06 MPa, α = 1.0978, A = 0.7781 and φ = 32.0°. When I1 = 299.99 MPa, α = 1.1251, A = 0.8191 and φ = 35.0°. When I1 = 224.99 MPa, α = 1.1528, A = 0.8615 and φ = 38.6°. The meridian plane parameters of the DPMNu criterion are ξt = 0 MPa, A = 16.2249, and n = 0.6331, respectively. The deviatoric plane parameters of the DPMNu criterion are as follows: when ξ = 277.10 MPa, ω = 0.7447, α = 0.1527, and φ = 29.9°. When ξ = 225.20 MPa, ω = 0.7781, α = 0.1971 and φ = 32.0°. When ξ = 173.20 MPa, ω = 0.8191, α = 0.2487 and φ = 35.0°. When ξ = 224.99 MPa, ω = 0.8615, α = 0.2998 and φ = 38.6°.

The prediction results of the MCNUF criterion for the power function meridian plane passing through the origin point and the Laxiwa granite true triaxial test data are shown in Fig. 31, and the prediction results of the MNGNF and DPMNu criteria are shown in Fig. 

Fig. 32
figure 32

Prediction results of the MNGNF and DPMNu criteria under the power function meridian plane passing through the origin point and the Laxiwa granite true triaxial test data: a deviatoric plane of the MNGNF criterion and b deviatoric plane of the DPMNu criterion

32.

3.3 Appendix C.3: Influence of the meridian plane function on the failure criterion for the Tien–Liao mudstone true triaxial test

Based on Sect. 5.3, this paper takes d = 10.3177 MPa (mean value) and K = 0.6975 (maximum value) as examples for calculation. The meridian plane parameters of the MCNUF criterion (see Fig. 

Fig. 33
figure 33

Prediction results of the MCNUF criterion for the linear function meridian plane passing through the I1 negative semi-axis and the Tien–Liao mudstone true triaxial test data: a best-fit envelope of the meridian plane, b deviatoric plane of the MCNUF criterion and c 3D space failure envelope surface of the MCNUF criterion

33a) are Nf = 0.3141, δt = 7.7383 MPa, and n = 1. According to the meridian plane parameters and the aspect ratio, the deviatoric plane parameters of the MCNUF criterion can be calculated as α = 1.2396, β = π or − π, γMC = 0.9329 and φ = 39.9°. Among them, the deviatoric plane of the LDNUF criterion does not satisfy the convexity requirement, and it is not analyzed in this paper.

The strength parameters of the MNGNF criterion are ω = 0.3141, β = 7.7383 MPa, n = 1, α = 1.0718, A = 0.8744 and φ = 39.9°. The strength parameters of the DPMNu criterion are A = 0.7694, ξt = 4.4677 MPa, n = 1, ω = 0.8744, α = 0.1415 and φ = 39.9°.

Figure 33 shows the prediction results of the MCNUF criterion passing through the I1 negative semi-axis linear meridian plane and the Tien–Liao mudstone true triaxial test data, and the prediction results of the MNGNF and DPMNu criteria are shown in Fig. 

Fig. 34
figure 34

Prediction results of the MCNUF and DPMNu criteria for the linear function meridian plane passing through the I1 negative semi-axis and the Tien–Liao mudstone true triaxial test data: a deviatoric plane of the MNGNF criterion and b deviatoric plane of the DPMNu criterion

34.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wu, S., Chang, X. et al. A novel three-dimensional nonlinear unified failure criterion for rock materials. Acta Geotech. (2023). https://doi.org/10.1007/s11440-023-02114-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-023-02114-w

Keywords

Navigation