Skip to main content
Log in

Relation between void ratio and contact fabric of granular soils

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Void ratio is one of the key engineering properties of granular soils. It reflects how well the grains are packed and hints whether the soil is contractive or dilative upon shearing. On the other hand, fabric tensor has been at the centre of experimental and theoretical granular mechanics research over the past decade for its intimate relation with the material’s anisotropy and critical-state behaviour. This paper tests the hypothesis that the void ratio and the fabric tensor of granular soils are tightly correlated to each other. Through discrete element method, a series of isotropic/anisotropic consolidation tests and monotonic triaxial compression and extension tests are conducted. The obtained void ratio data are found to collapse onto one unique surface, namely the fabric–void ratio surface (FVS), when plotted against the first two invariants of the contact-based fabric tensor. The robustness of this relation is confirmed by testing samples with different initial void ratios under various consolidation and monotonic triaxial stress paths. An additional undrained cyclic triaxial test followed by continuous shearing to critical state is performed to further examine the fabric–void ratio relation under complex loading paths. It is found that the previously identified FVS from monotonic tests still attracts the states of these specimens at critical state, although their fabric–void ratio paths deviate from the FVS during cyclic loading. The newly discovered FVS provides a refreshing perspective to interpret the structural evolution of granular materials during shearing and can serve as an important modelling component for fabric-based constitutive theories for sand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

a 1, a 2, a 3 :

Parameters in the Gunary equation

A 1, A 2 :

Parameter in the NL-FVS equation

b, b e :

Principal stress ratio and principal strain ratio

\(d,\overline{d }\) :

Particle diameter and average particle diameter

e :

Void ratio

e 0 :

Initial void ratio taken at p = 50 kPa

e c :

Critical-state void ratio

e r :

Reference void ratio

e data :

Void ratio of the DEM data

e FVS :

Corresponding void ratios on the FVS of DEM data

E :

Particle Young’s modulus

E 1, E 2, E 3 :

Major, intermediate, and minor principal values of the second kind fabric tensor

E ij :

Fabric tensor of the second kind

F :

Fabric anisotropy

F c :

Critical-state fabric anisotropy

F data :

Fabric anisotropy from DEM data

F n, F s :

Normal and tangential forces between two particles in contact

F ij :

Fabric tensor of the third kind

G ij :

Fabric tensor of the first kind

h :

Parameter in the O’Hern equation

h r :

Parameter in the NL-FVS equation

I :

Inertia number

k n, k s :

Normal and tangential stiffness of a particle

K n, K s :

Normal and tangential stiffness of a contact

M c, M e :

Critical stress ratio at compression and extension

n, n r :

Porosity and reference porosity

n :

Unit contact normal vector

N :

Number of loading cycles in cyclic triaxial test

N c,:

Number of contacts

N p :

Number of particles in the assembly

p :

Mean effective stress

p a :

Atmosphere pressure

p c :

Mean effective stress at the end of consolidation or the beginning of triaxial shearing

q :

Deviatoric stress

R :

Particle radius

Z :

Coordination number

Z c :

Critical-state coordination number

Z r :

Coordination number at reference porosity

Z data :

Coordination number from DEM data

Z th :

Threshold coordination number that distinguish the liquefied and non-liquefied state

δ n, δ s :

Normal and tangential displacement of a contact

δ ij :

Kronecker delta

Δt cr :

Critical time step

ε 1, ε 2, ε 3 :

Major, intermediate, and minor principal strain

ε a :

Axial strain

\(\dot{\varepsilon }\) :

Strain rate

η, η 0 :

Deviatoric stress ratio and the deviatoric stress ratio during consolidation

θ E :

Fabric lode angle

λ :

Parameter in the equation of e-p normal consolidation line

μ :

Particle friction coefficient after the initial compaction with p > 5 kPa

μ 0 :

Particle friction coefficient during the initial compaction with p ≤ 5 kPa

ξ :

Parameter in the equation of ep normal consolidation line

ρ :

Directional distribution of contact normals

\({\overline{\rho }}\) :

Directional distribution density of contact normals

ρ g :

Particle density

σ 1, σ 2, σ 3 :

Major, intermediate, and minor principal stress

φ :

Parameter in the O’Hern equation

ζ :

Parameter in the NL-FVS equation

Γ:

Maximum void ratio in the equation of ep normal consolidation line

Ω:

Solid angle

References

  1. Arzt E (1982) The influence of an increasing particle coordination on the densification of spherical powders. Acta Metall 30(10):1883–1890

    Article  Google Scholar 

  2. Chang CS, Chao SJ, Chang Y (1995) Estimates of elastic moduli for granular material with anisotropic random packing structure. Int J Solids Struct 32(14):1989–2008

    Article  MATH  Google Scholar 

  3. Cubrinovski M, Ishihara K (2002) Maximum and minimum void ratio characteristics of sands. Soils Found 42(6):65–78

    Article  Google Scholar 

  4. Da Cruz F, Emam S, Prochnow M, Roux JN, Chevoir F (2005) Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys Rev E 72:021309

    Article  Google Scholar 

  5. Druckrey AM, Imseeh WH, Alshibli KA (2021) Experimental evaluation of the anisotropic critical state theory for sand using 3D fabric evolution data of triaxial experiments. Acta Geotech. https://doi.org/10.1007/s11440-021-01260-3

    Article  Google Scholar 

  6. Fourie AB, Tshabalala L (2005) Initiation of static liquefaction and the role of K0 consolidation. Can Geotech J 42(3):892–906

    Article  Google Scholar 

  7. Ganju E, Kılıç M, Prezzi M, Salgado R, Parab N, Chen W (2021) Effect of particle characteristics on the evolution of particle size, particle morphology, and fabric of sands loaded under uniaxial compression. Acta Geotech 16(11):3489–3516

    Article  Google Scholar 

  8. Gao Z, Zhao J (2017) A non-coaxial critical-state model for sand accounting for fabric anisotropy and fabric evolution. Int J Solids Struct 106:200–212

    Article  Google Scholar 

  9. German RM (2014) Coordination number changes during powder densification. Powder Technol 253:368–376

    Article  Google Scholar 

  10. Gu X, Huang M, Qian J (2014) DEM investigation on the evolution of microstructure in granular soils under shearing. Granul Matter 16:91–106

    Article  Google Scholar 

  11. Guo N, Zhao J (2013) The signature of shear-induced anisotropy in granular media. Comput Geotech 47:1–15

    Article  MathSciNet  Google Scholar 

  12. Guo N, Zhao J (2014) Local fluctuations and spatial correlations in granular flows under constant-volume quasistatic shear. Phys Rev E 89(4):042208

    Article  Google Scholar 

  13. Hall SA, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G, Bésuelle P (2010) Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique 60(5):315–322

    Article  Google Scholar 

  14. Hu N, Yu H-S, Yang D-S, Zhuang P-Z (2020) Constitutive modelling of granular materials using a contact normal-based fabric tensor. Acta Geotech 15(5):1125–1151

    Article  Google Scholar 

  15. Huang X, Hanley KJ, O’sullivan C, Kwok CY, Wadee MA (2014) DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials. Granul Matter 16(5):641–655

    Article  Google Scholar 

  16. Imseeh WH, Druckrey AM, Alshibli KA (2018) 3D experimental quantification of fabric and fabric evolution of sheared granular materials using synchrotron micro-computed tomography. Granul Matter 20(2):24

    Article  Google Scholar 

  17. Iwata H, Homma T (1974) Distribution of coordination numbers in random packing of homogeneous spheres. Powder Technol 10:79–83

    Article  Google Scholar 

  18. Kanatani K-I (1984) Distribution of directional data and fabric tensors. Int J Eng Sci 22(2):149–164

    Article  MathSciNet  MATH  Google Scholar 

  19. Kato S, Ishihara K, Towhata I (2001) Undrained shear characteristics of saturated sand under anisotropic consolidation. Soils Found 41(1):1–11

    Article  Google Scholar 

  20. Kruyt NP (2012) Micromechanical study of fabric evolution in quasi-static deformation of granular materials. Mech Mater 44:120–129

    Article  Google Scholar 

  21. Kuhn MR, Sun W, Wang Q (2015) Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability. Acta Geotech 10(4):399–419

    Article  Google Scholar 

  22. Lenoir N, Bornert M, Desrues J, Bésuelle P, Viggiani G (2007) Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43(3):193–205

    Article  Google Scholar 

  23. Li XS, Dafalias YF (2012) Anisotropic critical state theory: role of fabric. J Eng Mech 138(3):263–275

    Google Scholar 

  24. Li X, Li XS (2009) Micro-macro quantification of the internal structure of granular materials. J Eng Mech 139(7):641–656

    Google Scholar 

  25. Li XS, Wang Y (1998) Linear representation of steady-state line for sand. J Geotech Geoenviron Eng 124(12):1215–1217

    Article  Google Scholar 

  26. Liao D, Yang Z (2021) Non-coaxial hypoplastic model for sand with evolving fabric anisotropy including non-proportional loading. Int J Numer Anal Meth Geomech 45(16):2433–2463

    Article  Google Scholar 

  27. Midi GDR (2004) On dense granular flows. Eur Phy J E 14(4):341–365

    Article  Google Scholar 

  28. Ng T (2006) Input parameters of discrete element methods. J Eng Mech 132(7):723–729

    Google Scholar 

  29. Nguyen HBK, Rahman MM, Fourie AB (2017) Undrained behaviour of granular material and the role of fabric in isotropic and K0 consolidations: DEM approach. Géotechnique 67(2):153–167

    Article  Google Scholar 

  30. Nguyen HBK, Rahman MM, Fourie AB (2018) Characteristic behavior of drained and undrained triaxial compression tests: DEM study. J Geotech Geoenviron Eng 144(9):04018060

    Article  Google Scholar 

  31. O’hern CS, Silbert LE, Liu AJ, Nagel SR (2003) Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys Rev E 68(1):011306

    Article  Google Scholar 

  32. Perez JCL, Kwok CY, O’sullivan C, Huang X, Hanley KJ (2016) Exploring the micro-mechanics of triaxial instability in granular materials. Géotechnique 66(9):725–740

    Article  Google Scholar 

  33. Poulos SJ, Castro G, France JW (1985) Liquefaction evaluation procedure. J Geotech Eng 111(6):772–792

    Article  Google Scholar 

  34. Rabbi ATMZ, Rahman MM, Cameron DA (2018) Undrained behavior of silty sand and the role of isotropic and K0 consolidation. J Geotech Geoenviron Eng 144(4):04018014

    Article  Google Scholar 

  35. Rahman MM, Dafalias YF (2021) Modelling undrained behaviour of sand with fines and fabric anisotropy. Acta Geotech. https://doi.org/10.1007/s11440-021-01410-7

    Article  Google Scholar 

  36. Roscoe KH, Schofield AN, Wroth CP (1958) On the yielding of soils. Géotechnique 8(1):22–53

    Article  Google Scholar 

  37. Rothenburg L, Kruyt NP (2004) Critical state and evolution of coordination number in simulated granular materials. Int J Solids Struct 41(21):5763–5774

    Article  MATH  Google Scholar 

  38. Shi J, Guo P (2018) Fabric evolution of granular materials along imposed stress paths. Acta Geotech 13(6):1341–1354

    Article  Google Scholar 

  39. Šmilauer V, Catalano E, Chareyre B, Dorofeenko S, Duriez J, Dyck N, Eliáš J, Er B, Eulitz A, Gladky A, Guo N, Jakob C, Kneib F, Kozicki J, Marzougui D, Maurin R, Modenese C, Scholtès L, Sibille L, Stránský J, Sweijen T, Thoeni K, Yuan C (2021) Yade documentation, 2nd edn. The Yade Project, Prague, Czechia. https://doi.org/10.5281/zenodo.34073, http://yade-dem.org/doc/. Accessed 8 Mar 2022

  40. Smith WO, Foote PD, Busang PF (1929) Packing of homogeneous spheres. Phys Rev 34(9):1271–1274

    Article  Google Scholar 

  41. Srivastava I, Silbert LE, Grest GS, Lechman JB (2020) Flow-arrest transitions in frictional granular matter. Phys Rev Lett 122(4):048003

    Article  Google Scholar 

  42. Suzuki M, Kada H, Hirota M (1999) Effect of size distribution on the relation between coordination number and void fraction of spheres in a randomly packed bed. Adv Powder Technol 10(4):353–365

    Article  Google Scholar 

  43. Tafili M, Triantafyllidis T (2020) A simple hypoplastic model with loading surface accounting for viscous and fabric effects of clays. Int J Numer Anal Meth Geomech 44(16):2189–2215

    Article  Google Scholar 

  44. Thornton C, Antony SJ (2000) Quasi-static shear deformation of a soft particle system. Powder Technol 109(1):179–191

    Article  Google Scholar 

  45. Tory EM, Church BH, Tam MK, Ratner M (1973) Simulated random packing of equal spheres. Can J Chem Eng 51(4):484–493

    Article  Google Scholar 

  46. Vairaktaris E, Theocharis AI, Dafalias YF (2020) Correlation of fabric tensors for granular materials using 2D DEM. Acta Geotech 15(3):681–694

    Article  Google Scholar 

  47. Wang G, Wei J (2016) Microstructure evolution of granular soils in cyclic mobility and post-liquefaction process. Granul Matter 18(3):1–13

    Article  Google Scholar 

  48. Wang R, Fu P, Zhang J-M, Dafalias YF (2016) DEM study of fabric features governing undrained post-liquefaction shear deformation of sand. Acta Geotech 11(6):1321–1337

    Article  Google Scholar 

  49. Wang R, Fu P, Zhang J-M, Dafalias YF (2019) Fabric characteristics and processes influencing the liquefaction and re-liquefaction of sand. Soil Dyn Earthq Eng 125:105720

    Article  Google Scholar 

  50. Wang R, Cao W, Xue L, Zhang J-M (2021) An anisotropic plasticity model incorporating fabric evolution for monotonic and cyclic behavior of sand. Acta Geotech 16(1):43–65

    Article  Google Scholar 

  51. Wei J, Huang D, Wang G (2020) Fabric evolution of granular soils under multidirectional cyclic loading. Acta Geotech 15(9):2529–2543

    Article  Google Scholar 

  52. Wen Y, Zhang Y (2021) Evidence of a unique critical fabric surface for granular soils. Géotechnique. https://doi.org/10.1680/jgeot.21.00126

    Article  Google Scholar 

  53. Wiebicke M, Andò E, Viggiani G, Herle I (2020) Measuring the evolution of contact fabric in shear bands with X-ray tomography. Acta Geotech 15(1):79–93

    Article  Google Scholar 

  54. Xie YH, Yang ZX, Barreto D, Jiang MD (2017) The influence of particle geometry and the intermediate stress ratio on the shear behavior of granular materials. Granul Matter 19(2):35

    Article  Google Scholar 

  55. Yang RY, Zou RP, Yu AB (2000) Computer simulation of the packing of fine particles. Phys Rev E 62(3):3900–3908

    Article  Google Scholar 

  56. Yang Z, Liao D, Xu T (2020) A hypoplastic model for granular soils incorporating anisotropic critical state theory. Int J Numer Anal Meth Geomech 44(6):723–748

    Article  Google Scholar 

  57. Yang M, Taiebat M, Mutabaruka P, Radjaï F (2021) Evolution of granular materials under isochoric cyclic simple shearing. Phys Rev E 103(3):032904

    Article  Google Scholar 

  58. Zhang ZP, Liu LF, Yuan YD, Yu AB (2001) A simulation study of the effects of dynamic variables on the packing of spheres. Powder Technol 116(1):23–32

    Article  Google Scholar 

  59. Zhang Y, Zhou X, Wen Y (2020) Constitutive theory for sand based on the concept of critical fabric surface. J Eng Mech 146(4):04020019

    Google Scholar 

  60. Zhao J, Gao Z (2015) Unified anisotropic elastoplastic model for sand. J Eng Mech 142(1):04015056

    Google Scholar 

  61. Zhao J, Guo N (2013) Unique critical state characteristics in granular media considering fabric anisotropy. Géotechnique 63(8):695–704

    Article  Google Scholar 

  62. Zhao S, Zhao J, Guo N (2020) Universality of internal structure characteristics in granular media under shear. Phys Rev E 101(1):012906

    Article  Google Scholar 

  63. Zhou W, Liu J, Ma G, Chang X (2017) Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials. Acta Geotech 12(3):527–540

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the U.S. National Science Foundation (NSF) under NSF CMMI Award no. 2113474.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yida Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Zhang, Y. Relation between void ratio and contact fabric of granular soils. Acta Geotech. 17, 4297–4312 (2022). https://doi.org/10.1007/s11440-022-01507-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01507-7

Keywords

Navigation