Skip to main content
Log in

Three-dimensional elastic–viscoplastic consolidation behavior of transversely isotropic saturated soils

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper investigates three-dimensional elastic–viscoplastic consolidation behaviors of transversely isotropic saturated soils. The Drucker–Prager yield criterion for isotropic materials is extended for modeling transversely isotropic medium. By coupling Perzyna’s viscoplastic theory with a transversely isotropic soil model, the incremental one-dimensional (1D) Nishihara’s constitutive model is established and then extended to formulate a three-dimensional (3D) material model. The method to obtaining the material parameters for the proposed model is also provided. The return mapping algorithm and algorithmic tangent matrix are presented to numerically implement the proposed theory into the finite element package—ABAQUS. We have validated the proposed theory by comparing numerical results with the uniaxial compression testing data of Shanghai soft clay and the field observations of soft soil embankments in the Dongting Lake area in China. Then, several numerical examples are conducted to study the influences of elastic–viscoplastic and transversely isotropic parameters on the time-dependent behavior of saturated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Abousleiman YN, Cheng HD, Jiang C, Roegiers JC (1996) Poroviscoelastic analysis of borehole and cylinder problems. Acta Mech 119(1):199–219

    Article  MATH  Google Scholar 

  2. Adachi T, Oka F (1982) Constitutive equations for normally consolidated clay based on elasto-viscoplasticity. Soils Found 22(4):57–70

    Article  Google Scholar 

  3. Ai ZY, Cheng YC (2014) Extended precise integration method for consolidation of transversely isotropic poroelastic layered media. Comput Math Appl 68(12):1806–1818

    Article  MathSciNet  MATH  Google Scholar 

  4. Ai ZY, Dai YC, Cheng YC (2019) Time-dependent analysis of axially loaded piles in transversely isotropic saturated viscoelastic soils. Eng Anal Bound Elem 101:173–187

    Article  MathSciNet  MATH  Google Scholar 

  5. Ai ZY, Jiang XB, Hu YD (2014) Analytical layer-element solution for 3D transversely isotropic multilayered foundation. Soils Found 54(5):967–973

    Article  Google Scholar 

  6. Ai ZY, Ye Z, Zhao YZ (2020) Consolidation analysis for layered transversely isotropic viscoelastic media with compressible constituents due to tangential circular loads. Comput Geotech 117: 103257

    Article  Google Scholar 

  7. Ai ZY, Zhao YZ, Liu WJ (2020) Fractional derivative modeling for axisymmetric consolidation of multilayered cross-anisotropic viscoelastic porous media. Comput Math Appl 79(5):1321–1334

    Article  MathSciNet  MATH  Google Scholar 

  8. Ai ZY, Zhao YZ, Song XY, Mu JJ (2019) Multi-dimensional consolidation analysis of transversely isotropic viscoelastic saturated soils. Eng Geol 253:1–13

    Article  Google Scholar 

  9. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  MATH  Google Scholar 

  10. Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26(2):182–185

    Article  MathSciNet  MATH  Google Scholar 

  11. Biot MA (1956) Theory of deformation of a porous viscoelastic anisotropic solid. J Appl Phys 27(5):459–467

    Article  MathSciNet  Google Scholar 

  12. Booker JR, Randolph MF (1984) Consolidation of a cross-anisotropic soil medium. Q J Mech Appl Math 37(3):479–495

    Article  MATH  Google Scholar 

  13. Booker JR, Small JC (1977) Finite element analysis of primary and secondary consolidation. Int J Solids Struct 13(2):137–149

    Article  MATH  Google Scholar 

  14. Borja RI, Yin Q, Zhao Y (2020) Cam-Clay plasticity. Part IX: On the anisotropy, heterogeneity, and viscoplasticity of shale. Comput Meth Appl Mech Eng 360:112695

    Article  MathSciNet  MATH  Google Scholar 

  15. Callisto L, Calabresi G (1998) Mechanical behaviour of a natural soft clay. Géotechnique 48(4):495–513

    Article  Google Scholar 

  16. Cao ZG, Chen JY, Cai YQ, Zhao L, Gu C, Wang J (2018) Long-term behavior of clay-fouled unbound granular materials subjected to cyclic loadings with different frequencies. Eng Geol 243:118–127

    Article  Google Scholar 

  17. Carrier GF (1946) Propagation of waves in orthotropic media. Q Appl Math 4:160–165

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen JJ, Lei H, Wang JH (2014) Numerical analysis of the installation effect of diaphragm walls in saturated soft clay. Acta Geotech 9(6):981–991

    Article  Google Scholar 

  19. Collins IF (2005) Elastic/plastic models for soils and sands. Int J Mech Sci 47(4–5):493–508

    Article  MATH  Google Scholar 

  20. Cryer CW (1963) A comparison of the three-dimensional consolidation theories of Biot and Terzaghi. Q J Mech Appl Math 16(4):401–412

    Article  MATH  Google Scholar 

  21. Deng Z, Tang J, Zhu Z, Fu G, Nie R (2014) Analytical solution for rheological one-dimensional consolidation of soft soil based on improved Nishihara model. J Hunan Univ (Nat Sci) 41(6):85–91

    Google Scholar 

  22. Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10(2):157–165

    Article  MathSciNet  MATH  Google Scholar 

  23. Duvaut G, Lions JL (1976) Inequalities in Mechanics and Physics. Springer-Verlag, Berlin-Heidelberg

    Book  MATH  Google Scholar 

  24. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, Oxford

    MATH  Google Scholar 

  25. Kabbaj M, Tavenas F, Leroueil S (1988) In situ and laboratory stress-strain relationship. Géotechnique 38:83–100

    Article  Google Scholar 

  26. Kutter BL, Sathialingam N (1992) Elastic-viscoplastic modelling of the rate-dependent behaviour of clays. Géotechnique 42(3):427–441

    Article  Google Scholar 

  27. Leoni M, Karstunen M, Vermeer PA (2008) Anisotropic creep model for soft soils. Géotechnique 58(3):215–226

    Article  Google Scholar 

  28. Li XB, Jia XL, Xie KH (2006) Analytical solution of 1-D viscoelastic consolidation of soft soils under time-dependent loadings. Rock Soil Mech 27(suppl):140–146

    Google Scholar 

  29. Liao JJ, Wang CD (2015) Elastic solutions for a transversely isotropic half-space subjected to a point load. Int J Numer Anal Methods Geomech 22(6):425–447

    Article  MATH  Google Scholar 

  30. Liu JC, Lei GH, Wang XD (2015) One-dimensional consolidation of visco-elastic marine clay under depth-varying and time-dependent load. Mar Geores Geotechnol 33(4):342–352

    Article  Google Scholar 

  31. Lu DC, Miao JB, Du XL, Tian Y, Yao YP (2020) A 3d elastic-plastic-viscous constitutive model for soils considering the stress path dependency. Sci China-Technol Sci 63(5):91–108

    Article  Google Scholar 

  32. Madaschi A, Gajo A (2017) A one-dimensional viscoelastic and viscoplastic constitutive approach to modeling the delayed behavior of clay and organic soils. Acta Geotech 12(4):827–847

    Article  Google Scholar 

  33. Mesri G, Choi YK (1985) Settlement analysis of embankments on soft clays. J Geotech Eng ASCE 111(4):441–464

    Article  Google Scholar 

  34. Nayak GC, Zienkiewicz OC (2010) Elasto-plastic stress analysis. a generalization for various constitutive relations including strain softening. Int J Numer Anal Methods. Geomech 5(1):113–135

    Article  MATH  Google Scholar 

  35. Nishihara M (1952) Creep of shale and sandy-shale. J Geol Soc Japan 58:373–377

    Article  Google Scholar 

  36. Pan E (1989) Static response of a transversely isotropic and layered half-space to general surface loads. Phys Earth Planet Inter 58(2):103–117

    Article  Google Scholar 

  37. Pan E (1994) An exact solution for transversely isotropic, simply supported and layered rectangular plates. J Elast 25(2):101–116

    Article  MathSciNet  MATH  Google Scholar 

  38. Perzyna P (1963) The constitutive equations for rate sensitive plastic materials. Q Appl Math 20(4):321–332

    Article  MathSciNet  MATH  Google Scholar 

  39. Qian JG, Du ZB, Yin ZY (2018) Cyclic degradation and non-coaxiality of soft clay subjected to pure rotation of principal stress directions. Acta Geotech 13(4):943–959

    Article  Google Scholar 

  40. Rezania M, Taiebat M, Poletti E (2016) A viscoplastic SANICLAY model for natural soft soils. Comput Geotech 73:128–141

    Article  Google Scholar 

  41. Roscoe KH, Burland JB (1968) On the generalized stress-strain behaviour of wet clay. Engineering Plasticity. Cambridge University Press, London, pp 535–609

    MATH  Google Scholar 

  42. Roscoe KH, Thurairajah A, Schofield A (1963) Yielding of clays in states wetter than critical. Géotechnique 13(3):211–240

    Article  Google Scholar 

  43. Rowe RK, Hinchberger SD (1998) Significance of rate effects in modelling the Sackville test embankment. Can Geotech J 35(3):500–516

    Article  Google Scholar 

  44. Schofield AN, Wroth CP (1968) Critical State Soil Mechanics. McGraw Hill, London

    Google Scholar 

  45. Sergio AM, Miguel PR (2018) Assessment of an alternative to deep foundations in compressible clays: the structural cell foundation. Front Struct Civ Eng 12(1):67–80

    Article  Google Scholar 

  46. Shahbodagh B, Mac TN, Esgandani GA, Khalili N (2020) A bounding surface viscoplasticity model for time-dependent behavior of soils including primary and tertiary Creep. Int J Geomech 20(9):04020143

    Article  Google Scholar 

  47. Shahrour I, Meimon Y (1995) Calculation of marine foundations subjected to repeated loads by means of the homogenization method. Comput Geotech 17(1):93–106

    Article  Google Scholar 

  48. Shi Q (1998) Experimental investigation of creep behaviour of saturated soft clay. Soil Eng Found 12(3):40–44

    Google Scholar 

  49. Shi X, Wu J, Ye S, Zhang Y, Xue Y, Wei Z, Li Q, Yu J (2008) Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City. China Eng Geol 100(1–2):27–42

    Article  Google Scholar 

  50. Simo JC, Hughes TJR (1998) Computational Inelasticity. Springer, New York

    MATH  Google Scholar 

  51. Singh SJ, Rosenman M (1974) Quasi-static deformation of viscoelastic half-space by a displacement dislocation. Phys Earth Planet Inter 8(1):87–101

    Article  Google Scholar 

  52. Taylor DW, Merchant W (1940) A theory of clay consolidation accounting for secondary compressions. J Math Phys 19(3):167–185

    Article  Google Scholar 

  53. Vermeer PA, Borst R (1984) Non-associated plasticity for soils, concrete and rock. Heron 29(3):1–64

    Google Scholar 

  54. Vermeer PA, Neher HP (2000) A soft soil model that accounts for creep. Proc Plaxis Symp Beyond Comput Geotech Amsterdam 1999:249–262

    Google Scholar 

  55. Wang CD, Liao JJ (2002) Elastic solutions for stresses in a transversely isotropic half-space subjected to three-dimensional buried parabolic rectangular loads. Int J Numer Anal Methods Geomech 39(18):4805–4824

    MATH  Google Scholar 

  56. Xie KH, Xie XY, Li XB (2008) Analytical theory for one-dimensional consolidation of clayey soils exhibiting rheological characteristic under time-dependent loading. Int J Numer Anal Methods Geomech 32(14):1833–1855

    Article  MATH  Google Scholar 

  57. Xu GL, Zhang JW, Liu H, Ren CQ (2018) Shanghai center project excavation induced ground surface movements and deformations. Front Struct Civ Eng 12(1):26–43

    Article  Google Scholar 

  58. Yimsiri S, Soga K (2011) Cross-anisotropic elastic parameters of two natural stiff clays. Geotechnique 61(9):809–814

    Article  Google Scholar 

  59. Yin ZY, Chang CS, Hicher PY, Karstunen M (2009) Micromechanical analysis of kinematic hardening in natural clay. Int J Plast 25(8):1413–1435

    Article  MATH  Google Scholar 

  60. Yin JH, Feng WQ (2017) A new simplified method and its verification for calculation of consolidation settlement of a clayey soil with creep. Can Geotech J 54(3):333–347

    Article  Google Scholar 

  61. Yin JH, Graham J (1999) Elastic viscoplastic modelling of the time-dependent stress-strain behaviour of soils. Can Geotech J 36(4):736–745

    Article  Google Scholar 

  62. Yin JH, Zhu JG, Graham J (2002) A new elastic-viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification. Can Geotech J 39(1):157–173

    Article  Google Scholar 

  63. Yue ZQ (1995) Elastic fields in two joined transversely isotropic solids due to concentrated forces. Int J Eng Sci 33(3):351–369

    Article  MathSciNet  MATH  Google Scholar 

  64. Yue ZQ, Xiao HT, Tham LG, Lee CF, Yin JH (2005) Stresses and displacements of a transversely isotropic elastic halfspace due to rectangular loadings. Eng Anal Bound Elem 29(6):647–671

    Article  MATH  Google Scholar 

  65. Zhou C, Yin JH, Zhu JG, Cheng CM (2005) Elastic anisotropic viscoplastic modeling of the strain-rate-dependent stress-strain behaviour of K0-consolidated natural marine clays in triaxial shear tests. Int J Geomech ASCE 5(3):218–232

    Article  Google Scholar 

  66. Zhu QY, Yin ZY, Hicher PY, Shen SL (2016) Nonlinearity of one-dimensional creep characteristics of soft clays. Acta Geotech 11(4):887–900

    Article  Google Scholar 

  67. Zhu HH, Zhang CC, Mei GX, Shi B, Gao L (2017) Prediction of one-dimensional compression behavior of Nansha clay using fractional derivatives. Mar Geores Geotechnol 35(5):688–697

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 41672275). We would like to express our sincere appreciation to Professor Xiaoyu Song in University of Florida for his careful and constructive comments on this paper.

Funding

National Natural Science Foundation of China, 41672275, Zhi Yong Ai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Yong Ai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The kernel of the subroutine in ABAQUS is presented as follows:

"DO I = 1,NTENS.

DO J = 1,NTENS.

VERATE(I) = VERATE(I) + VMA(I,J)*STRESS(J)*(1.0 + E1/E0)/eta1.

ENDDO.

VERATE(I) = VERATE(I)-E1*STRAN(I)/eta1.

ENDDO.

DSTRIAL = 0.0

DO I = 1,NTENS.

DO J = 1,NTENS.

DSTRIAL(I) = DSTRIAL(I) + VEJM(I,J)*(DSTRAN(J)-Bn*VERATE(J)).

ENDDO.

STRIAL(I) = DSTRIAL(I) + STRESS(I).

ENDDO.

I1 = STRIAL(1) + STRIAL(2) + STRIAL(3)

J2 = 0.5*((STRIAL(2)-STRIAL(3))**2.0 + (STRIAL(3)-STRIAL(1))**2.0 + lambda*(STRIAL(1)-STRIAL(2))**2.0 + 12.0*lambda_tao*(STRIAL(5)**2.0 + STRIAL(6)**2.0) + (4.0*lambda + 2.0)*STRIAL(4)**2.0)/(2.0 + lambda)

q_tri = SQRT(3.0*J2).

p_tri = I1/3.0

F = q_tri + p_tri*A_phi.

c = c0 + H*EVPSTRAN.

F0 = K*c

Dgamma = 0.0

IF (F.LE.F0) THEN.

STRESS = STRIAL.

DDSDDE = VEJM.

VESTRAN = VESTRAN + DSTRAN.

ELSE.

EVPSTRAN_G = EVPSTRAN.

EVPSTRAN_E = EVPSTRAN.

c_G = c0.

c_E = c0.

d = -SQRT(3.0)*VG-VK*A_phi*A_psi-K*K*H.

DO I = 1,100.

Dgamma = Dgamma-(F-F0)/d.

EVPSTRAN_G = EVPSTRAN_G + K*Dgamma.

c_G = c0 + H*EVPSTRAN_G.

F = q_tri-SQRT(3.0)*VG*Dgamma + (p_tri-VK*A_psi*Dgamma)*A_phi.

F0 = K*c_G

F (F-F0.LE.TOL) THEN.

I1_New = I1-3.0*VK*A_psi*Dgamma

DO J = 1,NDI.

STRESS(J) = (1.0-SQRT(3.0)*VG*Dgamma/q_tri)*(STRIAL(J)-I1/3.0) + I1_New/3.0

STRESS(J + NDI) = (1.0-SQRT(3.0)*VG*Dgamma/q_tri)*STRIAL(J + NDI).

ENDDO.

goto 10.

ENDIF.

if(I =  = 100)THEN.

call xit().

endif.

ENDDO.

10 continue.

IF ((SQRT(J2)-VG*Dgamma).LT.0.0) THEN.

DVPSTRAN = 0.0

d = K*K*H/(A_psi*A_phi) + VK.

DO I = 1,100.

R = c_E*K/A_psi-p_tri + VK*DVPSTRAN.

DVPSTRAN = DVPSTRAN-r/d.

EVPSTRAN_E = EVPSTRAN_E + DVPSTRAN*K/A_phi.

c_E = c0 + H*EVPSTRAN_E.

IF (ABS(r).LE.TOL) THEN.

EVPSTRAN = EVPSTRAN_E.

c = c_E.

FORALL(J = 1:NDI) STRESS(J) = p_tri-VK*DVPSTRAN.

FORALL(J = 1:NDI) STRESS(J + NDI) = 0.0

goto 20.

ENDIF.

if(I =  = 100)THEN.

call xit().

endif.

ENDDO.

ELSE.

EVPSTRAN = EVPSTRAN_G.

c = c_G.

ENDIF.

20 continue.

ENDIF.

STATEV(1) = EVPSTRAN.

RETURN.

END".

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Z.Y., Zhao, Y.Z., Dai, Y.C. et al. Three-dimensional elastic–viscoplastic consolidation behavior of transversely isotropic saturated soils. Acta Geotech. 17, 3959–3976 (2022). https://doi.org/10.1007/s11440-021-01423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01423-2

Keywords

Navigation