Skip to main content
Log in

Effect of shear bond failure on the strength ratio in DEM modeling of quasi-brittle materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Displacement softening has shown to be an effective ingredient to overcome common deficiencies associated with DEM modeling based on bonded spherical particles (Ma and Huang in Int J Rock Mech Min Sci 104:9–19, 2018b). By incorporating a softening path in the normal force–displacement contact law, we show that the softening contact model can not only yield a realistic compressive over tensile strength ratio as high as about 30, but also capture the highly nonlinear failure envelope at the confined extension stress range, typical for quasi-brittle materials such as rocks and concretes. In our previous model, bond breakage at the particle scale is governed by the normal bond strength only. Here, we generalize the model by removing the restriction on the shear bond failure. Formulation of the displacement-softening model is first introduced. Novel features from modeling the behaviors of Berea sandstone without considering shear bond failure are summarized. How material behaviors at both the micro- and macroscale are affected by the inclusion of shear bond failure is then analyzed. Finally, implications of the numerical results in the context of how to calibrate material properties for DEM modeling in general is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(\beta \) :

Reciprocal of the softening coefficient \(\chi \)

\(\chi \) :

Softening coefficient

\(\chi _{*}\) :

Critical value of \(\chi \)

\(\eta _{\mathrm{{sc}}}\) :

Percentage of shear micro-cracks at 80\(\%\) of the post-peak loading level in the uniaxial compression test

\(\eta _{\mathrm{{st}}}\) :

Percentage of shear micro-cracks at 80\(\%\) of the post-peak loading level in the direct tension test

\(\eta _{\mathrm{{s}}}\) :

Percentage of shear micro-cracks at the peak stress level

\(\kappa \) :

Normal over shear stiffness ratio of the point contact

\(\mu \) :

Coulomb’s friction coefficient

\(\omega \) :

ratio between the limiting confining stress where the tension cutoff ends and the uniaxial tensile strength

\({\overline{\delta }}_{*}\) :

Normal bond stretch when the bond breaks (m)

\({\overline{\delta }}_{\mathrm{{c}}}\), \({\overline{\delta }}_{2}\) :

Critical stretch (m)

\({\overline{\delta }}_\mathrm{{n}}\) :

Normal bond stretch (m)

\({\overline{\kappa }}\) :

Area contact (bond) stiffness ratio

\({\overline{\sigma }}_{\mathrm{{c}}}\) :

Normal bond strength

\({\overline{\tau }}_{\mathrm{{c}}}\) :

Shear bond strength

\({\overline{\theta }}\) :

relative angle of rotation between the particles

\({\overline{E}}_{\mathrm{{c}}}\) :

Area contact (bond) modulus (GPa)

\({\overline{F}}_{n\text {max}}\) :

Maximum normal bond force (N)

\({\overline{F}}_\mathrm{{n}}\) :

Normal bond force (N)

\({\overline{F}}_{\mathrm{{s}}} \) :

Shear bond force (N)

\({\overline{k}}_{\ell }\) :

Normal bond stiffness of the elastic loading path (N/m)

\({\overline{k}}_\mathrm{{u}}\) :

Normal bond stiffness of the softening path (N/m)

\({\overline{M}}^{n}\) :

Twisting moment (N m)

\({\overline{R}}\) :

Bond radius (m)

\({\overline{U}}_\mathrm{{b}}\) :

Nominal energy loss density associated with one bond breakage (MPa)

\(\sigma _1\) :

Maximum principal stress (MPa)

\(\sigma _3\) :

Minimum principal stress (MPa)

\(\sigma _{\mathrm{{c}}}\), UCS:

Uniaxial compressive strength (MPa)

\(\sigma _t\), UTS:

Uniaxial tensile strength (MPa)

\(\varpi \) :

Shear over normal bond strength ratio

A :

Cross-sectional area of the bond (\({\hbox {m}}^2\))

D :

Diameter of the cylindrical assembly (mm)

\(E_{\mathrm{{c}}}\) :

Point contact modulus (GPa)

H :

Height of the cylindrical assembly (mm)

J :

Polar moment of inertia (\({\text {m}}^4\))

N :

Total number of micro-cracks at the peak stress

References

  1. Bobich JK (2005) Experimental analysis of the extension to shear fracture transition in Berea sandstone. Master’s Thesis, Texas A&M University

  2. Brace WF (1964) State of stress in the earth’s crust. In: Judd WR (ed) Brittle fracture of rocks. Elsevier, New York, pp 110–178

    Google Scholar 

  3. Cho N, Martin CD, Sego DC (2007) A clumped particle model for rock. Int J Rock Mech Min Sci 44(7):997–1010

    Article  Google Scholar 

  4. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  5. Fairhurst C (1964) On the validity of the Brazilian test for brittle materials. Int J Rock Mech Min Sci Geomech Abstr 1(4):535–546

    Article  Google Scholar 

  6. Fowell RJ (1993) The mechanics of rock cutting. In: Hudson JA (ed) Comprehensive rock engineering, vol 4. Pergamon Press Ltd., Oxford, pp 155–176

    Google Scholar 

  7. Haimson B (2007) Micromechanisms of borehole instability leading to breakouts in rocks. Int J Rock Mech Min Sci 44(2):157–173

    Article  Google Scholar 

  8. Hampton J, Gutierrez M, Matzar L, Hu D, Frash L (2018) Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests. J Rock Mech Geotech Eng 10(5):805–817

    Article  Google Scholar 

  9. Hoek E, Bieniawski ZT (1965) Brittle fracture propagation in rock under compression. Int J Fract Mech 1(3):137–155

    Article  Google Scholar 

  10. Hoek E, Martin CD (2014) Fracture initiation and propagation in intact rock—a review. J Rock Mech Geotech Eng 6(4):287–300

    Article  Google Scholar 

  11. Huang H (1999) Discrete element modeling of tool-rock interaction. Ph.D. Thesis, University of Minnesota

  12. Huang H, Detournay E (2008) Intrinsic length scales in tool-rock interaction. Int J Geomech 8(1):39–44

    Article  Google Scholar 

  13. Huang H, Lecampion B, Detournay E (2013) Discrete element modeling of tool-rock interaction I: rock cutting. Int J Numer Anal Methods Geomech 37(13):1913–1929

    Article  Google Scholar 

  14. Itasca Consulting Group, Inc (2015) PFC3D—particle flow code in 3-dimensions, Ver. 5.0. Minneapolis, MN

  15. Ma Y, Huang H (2017) Tensile strength calibration in DEM modeling. In: 51st US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  16. Ma Y, Huang H (2018a) DEM analysis of failure mechanisms in the intact Brazilian test. Int J Rock Mech Min Sci 102:109–119

    Article  Google Scholar 

  17. Ma Y, Huang H (2018b) A displacement-softening contact model for discrete element modeling of quasi-brittle materials. Int J Rock Mech Min Sci 104:9–19

    Article  Google Scholar 

  18. Okubo S, Fukui K (1996) Complete stress–strain curves for various rock types in uniaxial tension. Int J Rock Mech Min Sci 33(6):549–556

    Article  Google Scholar 

  19. Pierce M, Cundall P, Potyondy DO, Mas Ivars D (2007) A synthetic rock mass model for jointed rock. In: Proceedings of 1st Canada-US rock mechanics symposium, rock mechanics: meeting society’s challenges and demands, Vancouver, vol 1, pp 341–349

  20. Potyondy DO (2012) A flat-jointed bonded-particle material for hard rock. In: Proceedings of 46th US rock mechanics/geomechanics symposium. American Rock Mechanics Association, Chicago, USA

  21. Potyondy DO (2018) A flat-jointed bonded-particle material for rock. In: Proceedings of 52th US rock mechanics/geomechanics symposium. American Rock Mechanics Association, Seattle, WA

  22. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  23. Qu J, Cherkaoui M (2007) Fundamentals of micromechanics of solids. Wiley, New York

    Google Scholar 

  24. Ramsey J, Chester F (2004) Hybrid fracture and the transition from extension fracture to shear fracture. Nature 428(6978):63–66

    Article  Google Scholar 

  25. Scholtès L, Donzé FV (2013) A DEM model for soft and hard rocks: role of grain interlocking on strength. J Mech Phys Solids 61:352–369

    Article  Google Scholar 

  26. Stead D, Eberhardt E, Coggan JS (2006) Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Eng Geol 83(1–3):217–235

    Article  Google Scholar 

  27. Tarokh A, Fakhimi A (2014) Discrete element simulation of the effect of particle size on the size of fracture process zone in quasi-brittle materials. Comput Geotech 62:51–60

    Article  Google Scholar 

  28. Teufel LW, Clark JA (1981) Hydraulic-fracture propagation in layered rock: experimental studies of fracture containment. Technical report, Sandia National Labs., Albuquerque, NM (USA)

  29. Wong TF, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation. J Geophys Res Solid Earth 102(B2):3009–3025

    Article  Google Scholar 

  30. Zietlow WK, Labuz JF (1998) Measurement of the intrinsic process zone in rock using acoustic emission. Int J Rock Mech Min Sci 35(3):291–299

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiying Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Huang, H. Effect of shear bond failure on the strength ratio in DEM modeling of quasi-brittle materials. Acta Geotech. 16, 2629–2642 (2021). https://doi.org/10.1007/s11440-021-01220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01220-x

Keywords

Navigation