Skip to main content
Log in

A state-dependent hypoplastic model for methane hydrate-bearing sands

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The mechanical behaviors of methane hydrate-bearing sands (MHBS) are largely affected by the presence of methane hydrate, temperature, and pore pressure. In this study, we present a simple hypoplastic model for MHBS. Methane hydrate saturation is included as a state parameter affecting the mechanical behaviors of MHBS. A new phase parameter is introduced to account for the coupled effects of temperature and pore pressure on the mechanical behaviors of MHBS. The phase parameter can be determined by a simple function of temperature and pore pressure. Comparison of the predictions with experiments shows that the model is able to capture the salient behaviors of MHBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Boswell R (2009) Is gas hydrate energy within reach? Science 325(5943):957–958

    Google Scholar 

  2. Cha MJ, Hu Y, Sum AK (2016) Methane hydrate phase equilibria for systems containing NaCl, KCl, and NH4Cl. Fluid Phase Equilib 413:2–9

    Google Scholar 

  3. Chaouachi M, Falenty A, Sell K, Enzmann F, Kersten M, Haberthür D, Kuhs WF (2015) Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy. Geochem Geophys Geosyst 16(6):1711–1722

    Google Scholar 

  4. Choi JH, Dai S, Lin JS, Seol Y (2018) Multistage triaxial tests on laboratory-formed methane hydrate-bearing sediments. J Geophys Res Solid Earth 123(5):3347–3357

    Google Scholar 

  5. Dong L, Li YL, Liao HL, Liu CL, Chen Q, Hu GW, Liu LL, Meng QG (2019) Strength estimation for hydrate-bearing sediments based on triaxial shearing tests. J Pet Sci Eng. https://doi.org/10.1016/j.petrol.2019.106478

    Article  Google Scholar 

  6. Duan ZH, Li D, Chen YL, Sun R (2011) The influence of temperature, pressure, salinity and capillary force on the formation of methane hydrate. Geosci Front 2(2):125–135

    Google Scholar 

  7. Guo XG, Peng C, Wu W, Wang YQ (2016) A hypoplastic constitutive model for debris materials. Acta Geotech 11(6):1217–1229

    Google Scholar 

  8. Huang WX, Wu W, Sun DA, Sloan S (2006) A simple hypoplastic model for normally consolidated clay. Acta Geotech 1(1):15–27

    Google Scholar 

  9. Hyodo M, Li YH, Yoneda J, Nakata Y, Yoshimoto N, Nishimura A, Song YC (2013) Mechanical behavior of gas-saturated methane hydrate-bearing sediments. J Geophys Res Solid Earth 118(10):5185–5194

    Google Scholar 

  10. Hyodo M, Nakata Y, Yoshimoto N, Fukunaga M, Kubo K, Nanjo Y, Matsuo T, Hyde AFL, Nakamura K (2002) Triaxial compressive strength of methane hydrate. In: The Twelfth international offshore and polar engineering conference. International society of offshore and polar engineers

  11. Hyodo M, Yoneda J, Yoshimoto N, Nakata Y (2013) Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed. Soils Found 53(2):299–314

    Google Scholar 

  12. Jager MD, Sloan ED (2001) The effect of pressure on methane hydration in pure water and sodium chloride solutions. Fluid Phase Equilib 185(1–2):89–99

    Google Scholar 

  13. Jiang MJ, Liu J, Shen ZF (2019) DEM simulation of grain-coating type methane hydrate bearing sediments along various stress paths. Eng Geol 261:105280

    Google Scholar 

  14. Jiang MJ, Shen ZF, Wu D (2018) CFD-DEM simulation of submarine landslide triggered by seismic loading in methane hydrate rich zone. Landslides 15(11):2227–2241

    Google Scholar 

  15. Jiang MJ, Zhu FY, Liu F, Utili S (2014) A bond contact model for methane hydrate-bearing sediments with interparticle cementation. Int J Numer Anal Methods Geomech 38(17):1823–1854

    Google Scholar 

  16. Klar A, Soga K, Ng MYA (2010) Coupled deformation-flow analysis for methane hydrate extraction. Géotechnique 60(10):765–776

    Google Scholar 

  17. Kolymbas D (1991) An outline of hypoplasticity. Arch Appl Mech 61(3):143–151

    MATH  Google Scholar 

  18. Lei L, Seol Y, Choi JH, Kneafsey TJ (2019) Pore habit of methane hydrate and its evolution in sediment matrix-laboratory visualization with phase-contrast micro-CT. Mar Pet Geol 104:451–467

    Google Scholar 

  19. Lin JS, Seol Y, Choi JH (2015) An SMP critical state model for methane hydrate-bearing sands. Int J Numer Anal Methods Geomech 39(9):969–987

    Google Scholar 

  20. Madhusudhan BN, Clayton CRI, Priest JA (2019) The effects of hydrate on the strength and stiffness of some sands. J Geophys Res Solid Earth 124(1):65–75

    Google Scholar 

  21. Maekawa T (2001) Equilibrium conditions for gas hydrates of methane and ethane mixtures in pure water and sodium chloride solution. Geochem J 35(1):59–66

    Google Scholar 

  22. Makogon TY, Sloan EDJ (1994) Phase equilibrium for methane hydrate from 190 to 262 K. J Chem Eng Data 39(2):351–353

    Google Scholar 

  23. Mašín D (2005) A hypoplastic constitutive model for clays. Int J Numer Anal Methods Geomech 29(4):311–336

    MATH  Google Scholar 

  24. Masui A, Haneda H, Ogata Y, Aoki K (2005) Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments. In: The fifteenth international offshore and polar engineering conference. International society of offshore and polar engineers

  25. Miyazaki K, Tenma N, Aoki K, Yamaguchi T (2012) A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples. Energies 5(10):4057–4075

    Google Scholar 

  26. Nixon MF, Grozic JLH (2007) Submarine slope failure due to gas hydrate dissociation: a preliminary quantification. Can Geotech J 44(3):314–325

    Google Scholar 

  27. Ng CWW, Baghbanrezvan S, Kadlicek T, Zhou C (2019) A state-dependent constitutive model for methane hydrate-bearing sediments inside the stability region. Géotechnique 39(9):1–15

    Google Scholar 

  28. Pinkert S (2016) Rowes stress-dilatancy theory for hydrate-bearing sand. Int J Geomech 17(1):06016008

    Google Scholar 

  29. Pinkert S, Grozic JLH (2014) Prediction of the mechanical response of hydrate-bearing sands. J Geophys Res: Solid Earth 119(6):4695–4707

    Google Scholar 

  30. Pinkert S, Grozic JLH, Priest JA (2015) Strain-softening model for hydrate-bearing sands. Int J Geomech 15(6):04015007

    Google Scholar 

  31. Rutqvist J, Moridis GJ, Grover T, Collett T (2015) Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production. J Petrol Sci Eng 67(1–2):1–12

    Google Scholar 

  32. Sabil KM, Nashed O, Lal B, Ismail L, Japper-Jaafar A (2015) Experimental investigation on the dissociation conditions of methane hydrate in the presence of imidazolium-based ionic liquids. J Chem Thermodyn 84:7–13

    Google Scholar 

  33. Sánchez M, Gai XR, Santamarina JC (2017) A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms. Comput Geotech 84:28–46

    Google Scholar 

  34. Sell K, Saenger EH, Falenty A, Chaouachi M, Haberthür D, Enzmann F, Kuhs WF, Kersten M (2016) On the path to the digital rock physics of gas hydrate-bearing sediments-processing of in situ synchrotron-tomography data. Solid Earth 7(4):1243–1258

    Google Scholar 

  35. Shen J, Chiu CF, Ng CWW, Lei GH, Xu J (2016) A state-dependent critical state model for methane hydrate-bearing sand. Comput Geotech 75:1–11

    Google Scholar 

  36. Shen ZF, Jiang MJ (2016) DEM simulation of bonded granular material. Part II. Extension to grain-coating type methane hydrate bearing sand. Comput Geotech 75:225–243

    Google Scholar 

  37. Soga K, Lee SL, Ng MYA, Klar A (2006) Characterisation and engineering properties of methane hydrate soils. Charact. Eng. Prop. Nat. Soils 4:2591–2642

    Google Scholar 

  38. Song YC, Zhu YM, Liu WG, Li YH, Lu Y, Shen ZT (2016) The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments. J Petrol Sci Eng 147:77–86

    Google Scholar 

  39. Sun SC, Ye YG, Liu CL, Xiang FK, Ma Y (2011) Pt stability conditions of methane hydrate in sediment from south china sea. J Nat Gas Chem 20(5):531–536

    Google Scholar 

  40. Tang Y, Wu W, Yin KL, Wang S, Lei GP (2019) A hydro-mechanical coupled analysis of rainfall induced landslide using a hypoplastic constitutive model. Comput Geotech 112:284–292

    Google Scholar 

  41. Uchida S, Xie XG, Leung YF (2016) Role of critical state framework in understanding geomechanical behavior of methane hydrate-bearing sediments. J Geophys Res: Solid Earth 121(8):5580–5595

    Google Scholar 

  42. Waite WF, Santamarina JS, Cortes DD, Dugan B, Espinoza DN, Germaine J, Jang J, Jung JW, Kneafsey TJ, Shin H, Soga K, Winters WJ, Yun TS (2009) Physical properties of hydrate-bearing sediments. Rev Geophys. https://doi.org/10.1029/2008RG000279

    Article  Google Scholar 

  43. Wang S, Wu W, Yin ZY, Peng C, He XZ (2018) Modelling the time-dependent behaviour of granular material with hypoplasticity. Int J Numer Anal Methods Geomech 42(12):1331–1345

    Google Scholar 

  44. Wang S, Wu W, Peng C, He XZ, Cui DS (2018) Numerical integration and FE implementation of a hypoplastic constitutive model. Acta Geotech 13(6):1265–1281

    Google Scholar 

  45. Wang S, Wu W, Zhang DC, Kim JR (2020) Extension of a basic hypoplastic model for overconsolidated clays. Comput Geotech 123:103486

    Google Scholar 

  46. Wu W, Bauer E (1994) A simple hypoplastic constitutive model for sand. Int J Numer Anal Methods Geomech 18(12):833–862

    MATH  Google Scholar 

  47. Wu W, Bauer E, Kolymbas D (1996) Hypoplastic constitutive model with critical state for granular materials. Mech Mater 23(1):45–69

    Google Scholar 

  48. Wu W, Kolymbas D (2000) Hypoplasticity then and now. In: Constitutive modelling of granular materials. Springer, Berlin, pp 57–105

  49. Wu W, Lin J, Wang XT (2017) A basic hypoplastic constitutive model for sand. Acta Geotech 12(6):1373–1382

    Google Scholar 

  50. Wu W, Wang S, Xu GF, Qi JL, Zhang DC, Kim KR (2019) Numerical Simulation of a CAES Pile with Hypoplasticity. In: Wu W (ed) Desiderata Geotechnica. Springer, New York, pp 242–249

    Google Scholar 

  51. Xu GF, Wu W, Qi JL (2016) An extended hypoplastic constitutive model for frozen sand. Soils Found 56(4):704–711

    Google Scholar 

  52. Yan RT, Wei CF (2017) Constitutive model for gas hydrate-bearing soils considering hydrate occurrence habits. Int J Geomech 17(8):04017032

    Google Scholar 

  53. Yu F, Song Y, Liu W, Li Y, Lam W (2011) Analyses of stress strain behavior and constitutive model of artificial methane hydrate. J Petrol Sci Eng 77(2):183–188

    Google Scholar 

  54. Yun TS, Francisca FM, Santamarina JC, Ruppel C (2005) Compressional and shear wave velocities in uncemented sediment containing gas hydrate. Geophys Res Lett 32(10):L10609

    Google Scholar 

  55. Zhang XH, Lin J, Lu XB, Liu LL, Liu CL, Li MY, Su YW (2018) A hypoplastic model for gas hydrate-bearing sandy sediments. Int J Numer Anal Methods Geomech 42(7):931–942

    Google Scholar 

  56. Zhang XH, Lu XB, Shi YH, Xia Z, Liu WT (2015) Centrifuge experimental study on instability of seabed stratum caused by gas hydrate dissociation. Ocean Eng 105:1–9

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Natural Science Foundation of China with Grant Numbers 51639008 and 51890911, the H2020 Marie Skłodowska-Curie Actions RISE 2017 “HERCULES” with Grant number 778360, and “FRAMED” with Grant number 734485. The second author wishes to thank the Otto Pregl Foundation for Fundamental Geotechnical Research for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingjing Jiang or Wei Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The complete hypoplastic equations for MHBS are summarized as follows:

$$\begin{aligned} \mathring{\varvec{\sigma }}= & {} f_{\mathrm{s}}\Big [C_1({\text {tr}}\varvec{\sigma }_{\mathrm{T}})\dot{\varvec{\epsilon }}+(1-f_{\mathrm{d}})C_2({\text {tr}}\varvec{\sigma }_{\mathrm{T}})({\text {tr}}\dot{\varvec{\epsilon }})\mathbf{I }+C_3 \frac{{\text {tr}}(\varvec{\sigma }_{\mathrm{T}}\dot{\varvec{\epsilon }})}{{\text {tr}}\varvec{\sigma }_{\mathrm{T}}}\varvec{\sigma }_{\mathrm{T}}\nonumber \\&+f_{\mathrm{d}} C_4(\varvec{\sigma }_{\mathrm{T}}+\varvec{\sigma }_{\mathrm{T}}^*)\Vert \dot{\varvec{\epsilon }} \Vert \Big ] \end{aligned}$$

where

$$\begin{aligned} \left\{ \begin{array}{lr} \varvec{\sigma }_{\mathrm{T}} =\varvec{\sigma }+S\mathbf{I } &{} \\ S=aS^{b}_{\mathrm{MH}}L^\prime &{} \\ f_{\mathrm{s}}=\frac{\text {exp}[\beta (e_{\mathrm{crt}}-e)]}{(1+r)^2} &{} \\ f_{\mathrm{d}}=\left( \frac{e}{e_{\mathrm{crt}}}\right) ^\alpha &{} \\ e_{\mathrm{crt}}=e_{\Gamma (\text {MH},L^\prime )}-\lambda \text {ln}(p^\prime /p_{\mathrm{a}}) &{} \\ e_{\Gamma (\text {MH},L^\prime )}=e_{\Gamma }+{\xi }S^{\chi _1}_{\mathrm{MH}}{L^\prime }^{\chi _2} \end{array} \right. \end{aligned}.$$

In the above equations, \(\varvec{\sigma }_{\mathrm{T}}\) is the transformed stress tensor, \(\mathring{\varvec{\sigma }}\) is the Jaumann stress rate, \(\varvec{\sigma }\) is the Cauchy stress tensor, \({\dot{\varvec{\epsilon }}}\) is the stretching tensor, I is the second-order unit tensor, S is the internal variable, e is the current void ratio, \(e_{\mathrm{crt}}\) is the critical state void ratio, r is the stress ratio \(\Vert \varvec{\sigma }^* \Vert /({\text {tr}}\varvec{\sigma })\), \(L'\) is the phase state parameter, \(e_{\Gamma (\text {MH},L^\prime )}\) is the critical state void of MHBS at the atmospheric pressure, \(e_\Gamma\) is the critical state void of sand at the atmospheric pressure \(p_{\mathrm{a}}\), and \(p'\) is the effective mean stress. The parameters of the model are \(C_{1}\), \(C_{2}\), \(C_{3}\), \(C_{4}\), \(e_\Gamma\), \(\lambda\), \(\alpha\), \(\beta\), a, b, \(\xi\), \(\chi _1\), \(\chi _2\), and \(L'\).

Appendix 2

The parameters \(C_{1}\), \(C_{2}\), \(C_{3}\), and \(C_{4}\) can be determined as follows. Considering a triaxial compression tests with constant confining pressure, the basic constitutive model (Eq. (1)) can be decomposed as:

$$\begin{aligned} \dot{\sigma _1}= & {} C_1(\sigma _1+2\sigma _3)\dot{\epsilon _1}+C_2(\dot{\epsilon _1}+2\dot{\epsilon _3})(\sigma _1+2\sigma _3)\\&+C_3\frac{\sigma _1\dot{\epsilon _1}+2\sigma _3\dot{\epsilon _3}}{\sigma _1+2\sigma _3}\sigma _1+C_4\frac{5\sigma _1-2\sigma _3}{3}\sqrt{\dot{\epsilon _1}^2+2\dot{\epsilon _3}^2} \\ \dot{\sigma _3}= & {} C_1(\sigma _1+2\sigma _3)\dot{\epsilon _3}+C_2(\dot{\epsilon _1}+2\dot{\epsilon _3})(\sigma _1+2\sigma _3)\\&+C_3\frac{\sigma _1\dot{\epsilon _1}+2\sigma _3\dot{\epsilon _3}}{\sigma _1+2\sigma _3}\sigma _3+C_4\frac{4\sigma _3-\sigma _1}{3}\sqrt{\dot{\epsilon _1}^2+2\dot{\epsilon _3}^2}. \end{aligned}$$

Taking \(C_{1}\), \(C_{2}\), \(C_{3}\), and \(C_{4}\) as unknowns, the above equations contain two linear equations. Provided the stress rates (\(\dot{\sigma _1}\), \(\dot{\sigma _3}\)) and strain rate (\(\dot{\epsilon _1}\), \(\dot{\epsilon _3}\)) are known for two arbitrary stress states (\(\sigma _1\), \(\sigma _3\)), a system of four linear equations can be obtained by setting these quantities into the above equations. For hydrostatic stress state and critical state, with R being the stress ratio and \(R_{\mathrm{crt}}\) being the critical state stress ratio, the following parameters are introduced: the initial tangential modulus, \(E_{\mathrm{i}}=[(\dot{\sigma _1}-\dot{\sigma _3})/\dot{\epsilon _1}]_{R=1}\); the initial Poisson ratio, \(\nu _{\mathrm{i}}=[\dot{\epsilon _3}/\dot{\epsilon _1}]_{R=1}\); and the critical state Poisson ratio, \(\nu _{\mathrm{crt}}=[\dot{\epsilon _3}/\dot{\epsilon _1}]_{R=R_{\mathrm{crt}}}\). Setting these quantities into the above equations, we obtain the following equation:

$$\begin{aligned} \left[ \begin{array}{cccc} 1 &{} 1+2\nu _{\mathrm{i}} &{} \frac{1+2\nu _{\mathrm{i}}}{9} &{} \frac{\sqrt{1+2\nu _{\mathrm{i}}}}{3} \\ \nu _{\mathrm{i}} &{} 1+2\nu _{\mathrm{i}} &{} \frac{1+2\nu _{\mathrm{i}}}{9} &{} \frac{\sqrt{1+2\nu _{\mathrm{i}}}}{3} \\ R_{\mathrm{crt}}+2 &{} \frac{1+2\nu _{\mathrm{crt}}}{R_{\mathrm{crt}}+2} &{} \frac{R_{\mathrm{crt}}+2\nu _{\mathrm{crt}}}{R_{\mathrm{crt}}+2}R_{\mathrm{crt}} &{} \frac{(5R_{\mathrm{crt}}-2)\sqrt{1+2\nu _{\mathrm{i}}}}{3} \\ R_{\mathrm{crt}}+2 &{} \frac{1+2\nu _{\mathrm{crt}}}{R_{\mathrm{crt}}+2} &{} \frac{R_{\mathrm{crt}}+2\nu _{\mathrm{crt}}}{R_{\mathrm{crt}}+2} &{} \frac{(4-R_{\mathrm{crt}})\sqrt{1+2\nu _{\mathrm{i}}}}{3} \end{array} \right] \left[ \begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \end{array} \right] = \left[ \begin{array}{c} \frac{E_{\mathrm{i}}}{3\sigma _3} \\ 0 \\ 0 \\ 0 \end{array} \right]. \end{aligned}$$

The values of \(C_1\), \(C_2\), \(C_3\), and \(C_4\) can be obtained by solving the above equation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, S., Jiang, M. et al. A state-dependent hypoplastic model for methane hydrate-bearing sands. Acta Geotech. 16, 77–91 (2021). https://doi.org/10.1007/s11440-020-01076-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01076-7

Keywords

Navigation