Skip to main content
Log in

Microstructural organization of remoulded clays in relation with dilatancy/contractancy phenomena

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This experimental work aimed to identify local mechanisms in remoulded clays under different triaxial loading conditions. The behaviour at a given stress level reached by two different stress paths, i.e. the conventional constant σ3 stress path and the purely deviatoric stress path, and the behaviour at two different stress levels along a given stress path were examined. The investigation concerned both normally consolidated and overconsolidated saturated specimens of remoulded kaolin clay. The microstructural states of the clay specimens induced by different triaxial loading paths were examined at two different scales using the scanning electron microscopy and the X-ray microtomography. The results highlighted five particle orientation modes that could be activated. These modes seem to be highly dependent on the stress level, the overconsolidation ratio and the stress path. Mesocracks were found to develop within strongly overconsolidated specimens accompanied by the occurrence of dilatancy. The proposed conceptual modes provide an interesting approach to understand the mechanical behaviour of remoulded clays, especially the macroscale dilatancy phenomenon, through the possible activation of different mechanisms at micro- and mesoscales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Anandarajah A, Kuganenthira N, Zhao D (1996) Variation of fabric anisotropy of kaolinite in triaxial loading. J Geotech Eng 122(8):633–640

    Article  Google Scholar 

  2. Bai X, Smart R (1997) Change in microstructure of kaolin in consolidation and undrained shear. Géotechnique 47(5):1009–1017

    Article  Google Scholar 

  3. Barton CM (1974) The micromorphological soil investigation work of Dr. Lafeber. In: Rutherford GK (ed) Soil microscopy. The Limestone Press, Kingston, pp 1–19

    Google Scholar 

  4. Bésuelle P, Viggiani G, Desrues J, Coll C, Charrier P (2014) A laboratory experimental study of the hydromechanical behavior of boom clay. Rock Mech Rock Eng 47(1):143–155

    Article  Google Scholar 

  5. Biarez J, Hicher PY (1994) Elementary mechanics of soils behaviour: saturated remoulded soils. AA Balkema, Rotterdam

    Google Scholar 

  6. Brochard L, Honório T, Vandamme M, Bornert M, Peigney M (2017) Nanoscale origin of the thermo-mechanical behavior of clays. Acta Geotech 12(6):1261–1279

    Article  Google Scholar 

  7. Chang CS, Yin ZY (2009) Modeling stress–dilatancy for sand under compression and extension loading conditions. J Eng Mech ASCE 136(6):777–786

    Article  Google Scholar 

  8. Delage P, Audiguier M, Cui YJ, Howat MD (1996) Microstructure of a compacted silt. Can Geotech J 33(1):50–158

    Article  Google Scholar 

  9. Delage P, Lefebvre G (1984) Study of the structure of a sensitive Champlain clay and of its evolution during consolidation. Can Geotech J 21(1):21–35

    Article  Google Scholar 

  10. Delage P, Pellerin FM (1984) Influence de la lyophilisation sur la structure d’une argile sensible du Québec. Clay Miner 19(2):151–160 (in French)

    Article  Google Scholar 

  11. Hammad T, Fleureau JM, Hattab M (2013) Kaolin/montmorillonite mixtures behaviour on oedometric path and microstructural variations. Eur J Environ Civ Eng 17(9):826–840

    Article  Google Scholar 

  12. Hattab M (2011) Critical state notion and microstructural considerations in clays. C R Méc 339(11):719–726

    Article  Google Scholar 

  13. Hattab M, Bouziri-Adrouche S, Fleureau JM (2010) Évolution de la microtexture d’une matrice kaolinitique sur chemin triaxial axisymétrique. Can Geotech J 47(1):34–48 (in French)

    Article  Google Scholar 

  14. Hattab M, Favre JL (2010) Analysis of the experimental compressibility of deep water marine sediments from the Gulf of Guinea. Mar Pet Geol 27(2):486–499

    Article  Google Scholar 

  15. Hattab M, Fleureau JM (2010) Experimental study of kaolin particle orientation mechanism. Géotechnique 60(5):323–331

    Article  Google Scholar 

  16. Hattab M, Hammad T, Fleureau JM (2015) Internal friction angle variation in a kaolin/montmorillonite clay mix and microstructural identification. Géotechnique 65(1):1–11

    Article  Google Scholar 

  17. Hattab M, Hicher PY (2004) Dilating behaviour of overconsolidated clay. Soils Found 44(4):27–40

    Article  Google Scholar 

  18. Hicher PY, Wahyudi H, Tessier D (2000) Microstructural analysis of inherent and induced anisotropy in clay. Mech Cohesive Frict Mater 5(5):341–371

    Article  Google Scholar 

  19. Ishikawa N, Fujii K, Satta N (2003) The influence factor of structural change in kaolinite suspensions during a freeze-drying process. Clay Sci 12(3):167–176

    Google Scholar 

  20. Kawaragi C, Yoneda T, Sato T, Kaneko K (2009) Microstructure of saturated bentonites characterized by x-ray CT observations. Eng Geol 106(1):51–57

    Article  Google Scholar 

  21. Penumadu D, Dean J (2000) Compressibility effect in evaluating the pore-size distribution of kaolin clay using mercury intrusion porosimetry. Can Geotech J 37(2):393–405

    Article  Google Scholar 

  22. Pusch R (1970) Microstructural changes in soft quick clay at failure. Can Geotech J 7(1):1–7

    Article  Google Scholar 

  23. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform 18(1):529. https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  24. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82(7–8):518–529. https://doi.org/10.1002/mrd.22489

    Article  Google Scholar 

  25. Shi B, Wu Z, Inyang H, Chen J, Wang B (1999) Preparation of soil specimens for SEM analysis using freeze-cut-drying. B Eng Geol Environ 58(1):1–7

    Article  Google Scholar 

  26. Stavropoulou E, Andò E, Tengattini A, Briffaut M, Dufour F, Atkins D, Armand G (2019) Liquid water uptake in unconfined Callovo Oxfordian clay-rock studied with neutron and x-ray imaging. Acta Geotech 14(1):19–33

    Article  Google Scholar 

  27. Terzaghi K (1925) Erdbaumechanik auf bodenphysikalischer Grundlage. F Deutsche Presse, Leipzig und Wien (in German)

    MATH  Google Scholar 

  28. Tian Y, Yao YP (2018) Constitutive modeling of principal stress rotation by considering inherent and induced anisotropy of soils. Acta Geotech 13(6):1299–1311

    Article  Google Scholar 

  29. Viggiani G, Lenoir N, Bésuelle P, Di Michiel M, Marello S, Desrues J, Kretzschmer M (2004) X-ray microtomography for studying localized deformation in fine-grained geomaterials under triaxial compression. C R Méc 332(10):819–826

    Article  Google Scholar 

  30. Yin ZY, Chang CS (2013) Stress–dilatancy behavior for sand under loading and unloading conditions. Int J Numer Anal Methods Geomech 37(8):855–870

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Lamine Ighil Ameur (LEM3, Université de Lorraine) for giving us triaxial testing data, and we acknowledge the scholarship offered by China Scholarship Council (CSC, Grant No. 201508430168) for the first author’s Ph.D. study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian-Feng Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, QF., Hattab, M., Jrad, M. et al. Microstructural organization of remoulded clays in relation with dilatancy/contractancy phenomena. Acta Geotech. 15, 223–243 (2020). https://doi.org/10.1007/s11440-019-00876-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00876-w

Keywords

Navigation