Skip to main content
Log in

Nanoscale all-optical devices based on surface plasmon polaritons

  • Progress
  • Optoelectronics & Laser
  • Published:
Chinese Science Bulletin

Abstract

Surface plasmon polariton, a kind of surface electromagnetic wave propagating along the interface between metals and dielectrics, provides an excellent platform for the realization of integrated photonic devices due to its unique properties of confining light into subwavelength scales. Our recent research progresses of nanoscale integrated photonic devices based on surface plasmon polaritons, including all-optical switches, all-optical logic discriminator, and all-optical routers, are introduced in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  1. Pitarke JM, Silkin VM, Chulkov EV et al (2007) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 70:1–87

    Article  Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  Google Scholar 

  3. Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Surface-plasmon circuitry. Phys Today 61:44–50

    Article  Google Scholar 

  4. Yao HM, Li Z, Gong QH (2009) Coupling-induced excitation of a forbidden surface plasmon mode of a gold nanorod. Sci China Ser G Phys Mech Astron 52:1129–1138

    Article  Google Scholar 

  5. MacDonald KF, Zheludev NI (2010) Active plasmonics: current status. Laser Photonics Rev 4:562–567

    Article  Google Scholar 

  6. Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748

    Article  Google Scholar 

  7. Chen J, Li Z, Yue S et al (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12:2494–2498

    Article  Google Scholar 

  8. Li Z, Gong Q (2009) The plasmonic coupling of metal nanoparticles and its implication for scanning near-field optical microscope characterization. Chin Sci Bull 54:3843

    Article  Google Scholar 

  9. Gu Y, Li J, Martin OJ et al (2010) Solving surface plasmon resonances and near field in metallic nanostructures: Green’s matrix method and its applications. Chin Sci Bull 55:2608–2617

    Article  Google Scholar 

  10. Dintinger J, Robel I, Kamat PV et al (2006) Terahertz all-optical molecule-plasmon modulation. Adv Mater 18:1645–1648

    Article  Google Scholar 

  11. Pacifici D, Lezec HJ, Atwater HA (2007) All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat Photonics 1:402–406

    Article  Google Scholar 

  12. MacDonald KF, Samson ZL, Stockman MI et al (2009) Ultrafast active plasmonics. Nat Photonics 3:55–58

    Article  Google Scholar 

  13. Yue S, Li Z, Chen J et al (2011) Ultrasmall and ultrafast all-optical modulation based on a plasmonic lens. Appl Phys Lett 98:161108

    Article  Google Scholar 

  14. Zhang XP, Sun BQ, Hodgkiss JM et al (2008) Tunable ultrafast optical switching via waveguided gold nanowires. Adv Mater 20:4455–4459

    Article  Google Scholar 

  15. Chen JJ, Li Z, Yue S et al (2011) Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit. Nano Lett 11:2933–2937

    Article  Google Scholar 

  16. Chen JJ, Li Z, Xiao JH et al (2013) Efficient all-optical molecule-plasmon modulation based on T-shape single slit. Plasmonics 8:233–237

    Article  Google Scholar 

  17. Chen JJ, Li Z, Zhang X et al (2013) Submicron bidirectional all-optical plasmonic switches. Sci Rep 3:1451

    Google Scholar 

  18. Pala RA, Shimizu KT, Melosh NA et al (2008) A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett 8:1506–1510

    Article  Google Scholar 

  19. Sasaki K, Nagamura T (1998) Ultrafast wide range all-optical switch using complex refractive-index changes in a composite film of silver and polymer containing photochromic dye. J Appl Phys 83:2894–2900

    Article  Google Scholar 

  20. Zhang F, Hu XY, Zhu Y et al (2013) Ultrafast all-optical tunable Fano resonance in nonlinear metamaterials. Appl Phys Lett 102:181109

    Article  Google Scholar 

  21. Chai Z, Hu XY, Zhu Y et al (2013) Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures. Appl Phys Lett 102:01119

    Article  Google Scholar 

  22. Zhu Y, Hu XY, Huang YY et al (2013) Fast and low-power all-optical tunable fano resonance in plasmonic microstructures. Adv Opt Mater 1:61–67

    Article  Google Scholar 

  23. Abb M, Albella P, Aizpurua J et al (2011) All-optical control of a single plasmonic nanoantenna-ITO hybrid. Nano Lett 11:2457–2463

  24. Zhu Y, Hu XY, Fu YL et al (2013) Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range. Sci Rep 3:2338

    Google Scholar 

  25. Asakawa K, Sugimoto Y, Watanabe Y et al (2006) Photonic crystal and quantum dot technologies for all-optical switch and logic device. New J Phys 8:208

    Article  Google Scholar 

  26. Ou P, Zhang Y, Zhang CX (2008) Optical generation of binary-phase-coded, direct-sequence ultra-wideband signals by polarization modulation and FBG-based multichannel frequency discriminator. Opt Express 16:5130–5135

    Article  Google Scholar 

  27. Wang Y, Zhang XL, Dong JJ et al (2007) Simultaneous demonstration on all-optical digital encoder and comparator at 40 Gb/S with semiconductor optical amplifiers. Opt Express 15:15080–15085

    Article  Google Scholar 

  28. Samson ZL, Yen SC, MacDonald KF et al (2010) Chalcogenide glasses in active plasmonics. Phys Status Solidi 4:274–276

    Google Scholar 

  29. Wurtz GA, Pollard R, Zayats AV (2006) Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys Rev Lett 97:057402

    Article  Google Scholar 

  30. Chen JJ, Li Z, Yue S et al (2010) Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit. Appl Phys Lett 97:041113

    Article  Google Scholar 

  31. Lu CC, Hu XY, Yang H et al (2013) Integrated all-optical logic discriminators based on plasmonic bandgap engineering. Sci Rep 3:2778

    Google Scholar 

  32. Fu YL, Hu XY, Yang H et al (2013) Ultrawide-band photon routing based on chirped plasmonic gratings. Appl Phys Lett 102:151110

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Qihuang Gong for useful discussions and important guidance. This work was supported by the National Basic Research Program of China (2013CB328704 and 2014CB921003), the National Natural Science Foundation of China (11204018, 11134001, 11225417, 61077027, 11121091, and 90921008), and the program for NCET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Chen.

Additional information

SPECIAL TOPIC: All-Optical Signal Processing

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Sun, C. & Hu, X. Nanoscale all-optical devices based on surface plasmon polaritons. Chin. Sci. Bull. 59, 2661–2665 (2014). https://doi.org/10.1007/s11434-014-0402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0402-7

Keywords

Navigation