Skip to main content
Log in

10Be in quartz gravel from the Gobi Desert and evolutionary history of alluvial sedimentation in the Ejina Basin, Inner Mongolia, China

  • Article
  • Geology
  • Published:
Chinese Science Bulletin

Abstract

Reconstructing the evolutionary history of the Gobi deserts developed from alluvial sediments in arid regions has great significance in unraveling changes in both tectonic activity and climate. However, such work is limited by a lack of suitable dating material preserved in the Gobi Desert, but cosmogenic 10Be has great potential to date the Gobi deserts. In the present study, 10Be in quartz gravel from the Gobi deserts of the Ejina Basin in Inner Mongolia of China has been measured to assess exposure ages. Results show that the Gobi Desert in the northern margin of the basin developed 420 ka ago, whereas the Gobi Desert that developed from alluvial plains in the Heihe River drainage basin came about during the last 190 ka. The latter developed gradually northward and eastward to modern terminal lakes of the river. These temporal and spatial variations in the Gobi deserts are a consequence of alluvial processes influenced by Tibetan Plateau uplift and tectonic activities within the Ejina Basin. Possible episodes of Gobi Desert development within the last 420 ka indicate that the advance/retreat of alpine glaciers during glacial/interglacial cycles might have been the dominant factor to influencing the alluvial intensity and water volume in the basin. Intense floods and large water volumes would mainly occur during the short deglacial periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McFadden L D, Wells S G. Jercinovich M J. Influences of eolian and pedogenic processes on the origin and evolution of desert pavements. Geology, 1987, 15: 504–508

    Article  Google Scholar 

  2. Cooke R U, Warren A, Goudie A S, et al. Desert Geomorphology. London: UCL Press, 1993. 1–4

    Google Scholar 

  3. Wang G Y, Dong G R, Li S, et al. An apprpaching discussion on Gobi plane and its facies significance (in Chinese). J Desert Res, 1995, 15: 124–130

    Google Scholar 

  4. Feng Z D, Chen F H, Tang L Y, et al. East Asian monsoon climates and Gobi dynamics in marine isotope stages 4 and 3. Catena, 1998, 33: 29–46

    Article  Google Scholar 

  5. Jiang X S, Pan Z X. Gobi sedments in the Cretaceous desert of China (in Chinese). J Mineral Petrol, 2001, 21: 74–80

    Google Scholar 

  6. Feng Z D. Gobi dynamics in the Northern Mongolian Plateau during the past 20000+ yr: Preliminary results. Quat Int, 2001, 76/77: 77–83

    Article  Google Scholar 

  7. Nishiizumi K, Lal D, Klein J, et al. Production of 10Be and 26Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates. Nature, 1986, 319: 134–136

    Article  Google Scholar 

  8. Klein J, Giegengack R, Middleton R, et al. Revealing histories of exposure using in situ produced 26Al and 10Be in Libyan Desert Glass. Radiocarbon, 1986, 28: 547–555

    Google Scholar 

  9. Cerling T E, Craig H. Geomorphology and in-situ cosmogenic isotopes. Annu Rev Earth Planet Sci, 1994, 22: 273–317

    Article  Google Scholar 

  10. Gosse J C, Phillips F M. Terrestrial in situ cosmogenic nuclides: Theory and application. Quat Sci Rev, 2001, 20: 1475–1560

    Article  Google Scholar 

  11. Bierman P R, Gillespie A R, Caffee M W. Cosmogenic ages for earthquake recurrence intervals and debris flow fan deposition, Owens Valley, California. Science, 1995, 270: 447–450

    Article  Google Scholar 

  12. Gu Z Y, Lal D, Liu T S, et al. Five million year 10Be record in Chinese loess and red-clay: Climate and weathering relationships. Earth Planet Sci Lett, 1996, 144: 273–287

    Article  Google Scholar 

  13. Siame L L, Bourlès D L, Sèbrier M, et al. Cosmogenic dating ranging from 20 to 700 ka of a series of alluvial fan surfaces affected by the El Tigre fault, Argentina. Geology, 1997, 25: 975–978

    Article  Google Scholar 

  14. Gu Z Y, Lal D, Liu T S, et al. Weathering histories of Chinese loess deposits based on uranium and thorium series nuclides and cosmogenic 10Be. Geochim Cosmochim Acta, 1997, 61: 5221–5231

    Article  Google Scholar 

  15. Nichols K K, Bierman P R, Hooke R L, et al. Quantifying sediment transport on desert piedmonts using 10Be and 26Al. Geomorphology, 2002, 45: 105–125

    Article  Google Scholar 

  16. Nishiizumi K, Caffee M W, Finkel R C, et al. Remnants of a fossil alluvial fan landscape of Miocene age in the Atacama Desert of northern Chile using cosmogenic nuclide exposure age dating. Earth Planet Sci Lett, 2005, 237: 499–507

    Article  Google Scholar 

  17. Vassallo R, Ritz J F, Braucher R, et al. Dating faulted alluvial fans with cosmogenic 10Be in the Gurvan Bogd mountain range (Gobi-Altay, Mongolia): Climatic and tectonic implications. Terra Nova, 2005, 17: 278–285

    Article  Google Scholar 

  18. Gu Z Y, Xu B, Lu Y W, et al. The geomorphological evolution of Nujiang Gorge: Preliminary results from cosmogenic dating of terrace (in Chinese). Quat Sci, 2006, 26: 293–294

    Google Scholar 

  19. Zhang H C, Ming Q Z, Lei G L, et al. Dilemma of dating on lacustrine deposits in an hyperarid inland basin of NW China. Radiocarbon, 2006, 48: 219–226

    Google Scholar 

  20. Hölz S, Polag D, Becken M, et al. Electromagnetic and geoelectric investigation of the Gurinai Structure, Inner Mongolia, NW China. Tectonophysics, 2007, 445: 26–48

    Article  Google Scholar 

  21. Hartmann K, Wünnemann B. Hydrological changes and Holocene climate variations in NW China, inferred from lake sediments of Juyanze palaeolake by factor analyses. Quat Int, 2009, 194: 28–44

    Article  Google Scholar 

  22. Wang X Y, Guo H D, Chang Y M, et al. On paleodrainage evolution in mid-late Epipleistocene based on radar remote sensing in northeastern Ejin Banner, Inner Mongolia. J Geograph Sci, 2004, 14: 235–241

    Article  Google Scholar 

  23. Becken M, Hölz S, Fiedler-Volmer R, et al. Electrical resisitivity image of the Jingsutu Graben at the NE margin of the Ejina Basin (NW China) and implications for the basin development. Geophys Res Lett, 2007, 34: L09315

    Article  Google Scholar 

  24. Chi Z Q, Wang Y, Yao P Y, et al. Tectonic and climatic events recorded by morphologic units in Ejin Qi, Inner Mongolia (in Chinese). Geol Rev, 2006, 52: 370–378

    Google Scholar 

  25. Ma J Z, Ding Z, Gates J B, et al. Chloride and the environmental isotopes as the indicators of the groundwater recharge in the Gobi Desert, northwest China. Environ Geol, 2008, 55: 1407–1419

    Article  Google Scholar 

  26. Ma Y, Cao X Q, Li Z P. Environment changes and its dynamic mechanism of Ejina region in the lower reaches of Heihe River (in Chinese). Meteorol Environ Sci, 2008, 31: 44–47

    Google Scholar 

  27. Xiao S C, Xiao H L. The impact of human activity on the water environment of Heihe water basin in last century (in Chinese). J Arid Land Resour Environ, 2004, 18: 57–62

    Google Scholar 

  28. Hu J M, Cui H T, Tang Z Y. Temporal and spatial characteristics of sandstorm in China and the influences of human activities on its development trend (in Chinese). J Nat Disast, 1999, 8: 49–56

    Google Scholar 

  29. Shi P J, Yan P, Gao S Y, et al. The duststorm disaster in China and its research progress (in Chinese). J Nat Disast, 2000, 9: 71–77

    Google Scholar 

  30. Editorial board of The People’s Republic of China Landform Atlas. The People’s Republic of China Landform Atlas (in Chinese). Beijing: Science Press, 2009

    Google Scholar 

  31. Anderson R S, Repka J L, Dick G S. Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al. Geology, 1996, 24: 47–51

    Article  Google Scholar 

  32. Repka J L, Anderson R S, Finkel R C. Cosmogenic dating of fluvial terraces, Fremont River, Utah. Earth Planet Sci Lett, 1997, 152: 59–73

    Article  Google Scholar 

  33. Hancock G S, Anderson R S, Chadwick O A, et al. Dating fluvial terraces with 10Be and 26Al profiles: Application to the Wind River, Wyoming. Geomorphology, 1999, 27: 41–60

    Article  Google Scholar 

  34. Nishiizumi K, Imamura M, Caffee M W, et al. Absolute calibration of 10Be AMS standards. Nucl Inst Meth B, 2007, 258: 403–413

    Article  Google Scholar 

  35. Balco G, Stone J O, Lifton N A, et al. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol, 2008, 3: 174–195

    Article  Google Scholar 

  36. Lal D. Cosmic ray labeling of erosion surface: in situ nuclide production rates and erosion models. Earth Planet Sci Lett, 1991, 104: 424–439

    Article  Google Scholar 

  37. Stone J O. Air pressure and cosmogenic isotope production. J Geophys Res, 2000, 105: 23753–23759

    Article  Google Scholar 

  38. Desilets D, Zreda M. Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating. Earth Planet Sci Lett, 2003, 206: 21–42

    Article  Google Scholar 

  39. Desilets D, Zreda M, Prabu T. Extended scaling factors for in situ cosmogenic nuclides: New measurements at low latitude. Earth Planet Sci Lett, 2006, 246: 265–276

    Article  Google Scholar 

  40. Dunai T J. Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides. Earth Planet Sci Lett, 2001, 193: 197–212

    Article  Google Scholar 

  41. Lifton N A, Bieber J W, Clem J M, et al. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth Planet Sci Lett, 2005, 239: 140–161

    Article  Google Scholar 

  42. Lal D. In situ-produced cosmogenic isotopes in terrestrial rocks. Ann Rev Earth Planet Sci, 1988, 16: 355–388

    Google Scholar 

  43. Lal D. Cosmic ray produced isotopes in terrestrial systems. P Indian Acad Sci (Earth Planet Sci), 1998, 107: 241–249

    Google Scholar 

  44. Ritz J F, Bourlès D L, Brown E T, et al. Late Pleistocene to Holocene slip rates for the Gurvan Bulag thrust fault (Gobi-Altay, Mongolia) estimated with 10Be dates. J Geophys Res, 2003, 108: ETG8-1–ETG8-16

    Article  Google Scholar 

  45. Vassallo R, Ritz J F, Braucher R, et al. Dating faulted alluvial fans with cosmogenic 10Be in the Gurvan Bogd mountain range (Gobi-Altay, Mongolia): Climatic and tectonic implications. Terra Nova, 2005, 17: 278–285

    Article  Google Scholar 

  46. Ritz J F, Vassallo R, Braucher R, et al. Using in situ-produced 10Be to quantify active tectonics in the Gurvan Bogd mountain range (Gobi-Altay, Mongolia). Geol Soc Am Bull, 2006, spe415-06: 87–109

    Google Scholar 

  47. Hetzel R, Niedermann S, Tao M X, et al. Low slip rates and long-term preservation of geomorphic features in Central Asia. Nature, 2002, 417: 428–432

    Article  Google Scholar 

  48. Gu Z Y, Liu T S, Lal D. Application of the in situ cosmogenic nuclides 10Be and 26Al for studies of formation and evolutionary histories of the Earth surface (in Chinese). Quat Sci, 1997, 3: 211–221

    Google Scholar 

  49. Wünnemann B, Altmann N, Hartmann K, et al. Interglacial and Glacial fingerprints from lake deposits in the Gobi Desert, NW China. In: Sirocko F, Clausen M, Sanchez-Goni M, eds. The Climate of the Past Interglacials. Amsterdam: Elsevier, 2005. 323–347

    Google Scholar 

  50. Harvey A M. The occurrence and role of arid zone alluvial fans. In: Thomas D S, ed. Arid Zone Geomorphology. London: Belhaven Press, 1989. 136–158

    Google Scholar 

  51. Ritter J B, Miller J R, Enzel Y, et al. Quaternary evolution of Cedar Creek alluvial fan, Montana. Geomorphology, 1993, 8: 287–304

    Article  Google Scholar 

  52. Harvey A M, Mather A E, Stokes M. Alluvial Fans: Geomorphology, Sedimentology, Dynamics. London: Geological Society, Special Publications, 2005, 251: 1–7

    Article  Google Scholar 

  53. Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001, 294: 1671–1677

    Article  Google Scholar 

  54. Zheng W T, Yang J C, Duan F J. A study on the relation between deformation of river terraces and neotectonic activity for the Wuwei Basin (in Chinese). Seismol Geol, 2000, 22: 318–328

    Google Scholar 

  55. Pan B T, Wu G J, Wang Y X, et al. Age and genesis of the Shagou River terraces in eastern Qilian Mountain. Chinese Sci Bull, 2001, 46: 509–513

    Article  Google Scholar 

  56. Gong J D, Cheng G D, Zhang X Y, et al. Environmental changes of Ejina region in the lower reaches of Heihe River (in Chinese). Adv Earth Sci, 2002, 17: 491–496

    Google Scholar 

  57. Wen X, Wu Y, Su J, et al. Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China. Environ Geol, 2005, 48: 665–675

    Article  Google Scholar 

  58. Si J H, Feng Q, Wen X H, et al. Major ion chemistry of groundwater in the extreme arid region of northwest China. Environ Geol, 2009, 57: 1079–1087

    Article  Google Scholar 

  59. Hartmann K, Wünnemann B, Zhang H C. Evidence of neotectonic impact on a large sedimentary basin between Tibetan Plateau and Gobi Altay, NW China. Quat Sci, 2009, 29: 687–695

    Google Scholar 

  60. Guo H D, Liu H, Wang X Y, et al. Subsurface old drainage detection and paleoenvironment analysis using spaceborne radar images in Alxa Plateau. Sci China Ser D Earth Sci, 2000, 43: 439–448

    Article  Google Scholar 

  61. Wang X Y, Guo H D, Shao Y, et al. Analysis of shallow groundwater based on SIR-C data in north Ejin County of Inner Mongolia (in Chinese). J Rem S, 2002, 6: 523–526

    Google Scholar 

  62. Zhang Y H, Wu Y Q, Su J P, et al. Mechanism of groundwater replenishment in Ejina Basin (in Chinese). J Des Res, 2006, 26: 96–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhaoYan Gu.

About this article

Cite this article

Lü, Y., Gu, Z., Aldahan, A. et al. 10Be in quartz gravel from the Gobi Desert and evolutionary history of alluvial sedimentation in the Ejina Basin, Inner Mongolia, China. Chin. Sci. Bull. 55, 3802–3809 (2010). https://doi.org/10.1007/s11434-010-4103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4103-6

Keywords

Navigation