Skip to main content
Log in

Hamilton-Jacobi-Bellman equations and dynamic programming for power-optimization of a multistage heat engine system with generalized convective heat transfer law

  • Article
  • Engineering Thermophysics
  • Published:
Chinese Science Bulletin

Abstract

A multistage endoreversible Carnot heat engine system operating between a finite thermal capacity high-temperature fluid reservoir and an infinite thermal capacity low-temperature environment with generalized convective heat transfer law [q T)m] is investigated in this paper. Optimal control theory is applied to derive the continuous Hamilton-Jacobi-Bellman (HJB) equations, which determine the optimal fluid temperature configurations for maximum power output under the conditions of fixed initial time and fixed initial temperature of the driving fluid. Based on the universal optimization results, the analytical solution for the Newtonian heat transfer law (m=1) is also obtained. Since there are no analytical solutions for the other heat transfer laws (m≠1), the continuous HJB equations are discretized and dynamic programming algorithm is performed to obtain the complete numerical solutions of the optimization problem. The relationships among the maximum power output of the system, the process period and the fluid temperature are discussed in detail. The results obtained provide some theoretical guidelines for the optimal design and operation of practical energy conversion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berry R S, Kazakov V A, Sieniutycz S, et al. Thermodynamic Optimization of Finite Time Processes. Chichester: Wiley, 1999

    Google Scholar 

  2. Chen L, Wu C, Sun F. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilib Thermodyn, 1999, 24: 327–359

    Article  Google Scholar 

  3. Sieniutycz S. Hamilton-Jacobi-Bellman framework for optimal control in multistage energy systems. Phys Rep, 2000, 326: 165–285

    Article  Google Scholar 

  4. Chen L. Finite Time Thermodynamic Analysis of Irreversible Progresses and Cycles (in Chinese). Beijing: Higher Education Press, 2005

    Google Scholar 

  5. Sieniutycz S, Jezowski J. Energy Optimization in Process Systems. Oxford, UK: Elsevier, 2009

    Google Scholar 

  6. Wang J H, He J Z, Mao Z Y. Performance of a quantum heat engine cycle working with harmonic oscillator systems. Sci China Ser G: Phys Mech Astron, 2007, 50: 163–176

    Article  Google Scholar 

  7. Xia D, Chen L, Sun F. Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer. Sci China Ser B: Chem, 2008, 51: 958–970

    Article  Google Scholar 

  8. Shu L, Chen L, Sun F. The minimal average heat consumption for heat-driven binary separation process with linear phenomenological heat transfer law. Sci China Ser B: Chem, 2009, 52: 1154–1163

    Article  Google Scholar 

  9. He J Z, He X, Tang W. The performance characteristics of an irreversible quantum Otto harmonic cycles. Sci China Ser G: Phys Mech Astron, 2009, 52: 1317–1323

    Article  Google Scholar 

  10. Liu X, Chen L, Wu F, et al. Ecological optimization of an irreversible harmonic oscillators Carnot heat engine. Sci China Ser G: Phys Mech Astron, 2009, 52: 1976–1988

    Article  Google Scholar 

  11. Xia S, Chen L, Sun F. Optimization for entransy dissipation minimi zation in heat exchanger. Chinese Sci Bull, 2009, 54: 3587–3595

    Article  Google Scholar 

  12. Ding Z, Chen L, Sun F. Thermodynamic characteristic of a Brownian heat pump in a spatially periodic temperature field. Sci China: Phys Mech Astron, 2010, 53: 876–885

    Article  Google Scholar 

  13. Xia S, Chen L, Sun F. Maximum work configurations of finite potential reservoir chemical engines. Sci China: Chem, 2010, 53: 1168–1176

    Article  Google Scholar 

  14. Xia S, Chen L, Sun F. Entransy dissipation minimization for liquid-solid phase processes. Sci China: Tech Sci, 2010, 53: 960–968

    Article  Google Scholar 

  15. Sieniutycz S. Hamilton-Jacobi-Bellman theory of dissipative thermal availability. Phys Rev E, 1997, 56: 5051–5064

    Article  Google Scholar 

  16. Sieniutycz S. Irreversible Carnot problem of maximum work in a finite time via Hamilton-Jacobi-Bellman theory. J Non-Equib Thermodyn, 1997, 22: 260–284

    Article  Google Scholar 

  17. Sieniutycz S. Nonlinear thermokinetics of maximum work in finite time. Int J Engng Sci, 1998, 36: 577–597

    Article  Google Scholar 

  18. Sieniutycz S. Endoreversible modeling and optimization of multi-stage thermal machines by dynamic programming. In: Wu C, Chen L, Chen J, eds. Recent Advances in Finite Time Thermodynamics, New York: Nova Science Publishers, 1999. 189–219

    Google Scholar 

  19. Sieniutycz S, von Spakovsky M R. Finite time generalization of thermal exergy. Energy Convers Mgmt, 1998, 39: 1423–1447

    Article  Google Scholar 

  20. Szwast Z, Sieniutycz S. Optimization of multi-stage thermal machines by Pontryagin’s like discrete maximum principle. In: Wu C, Chen L, Chen J, eds. Recent Advances in Finite Time Thermodynamics, New York: Nova Science Publishers, 1999. 221–237

    Google Scholar 

  21. Sieniutycz S, Szwast Z. Work limits in imperfect sequential systems with heat and fluid flow. J Non-Equilib Thermodyn, 2003, 28: 85–114

    Article  Google Scholar 

  22. Sieniutycz S. Development of generalized (rate dependent) availability. Int J Heat Mass Transfer, 2006, 49: 789–795

    Article  Google Scholar 

  23. Li J, Chen L, Sun F. Extremal work of an endoreversible system with two finite thermal capacity reservoirs. J Energy Ins, 2009, 82: 53–56

    Article  Google Scholar 

  24. Li J, Chen L, Sun F. Optimum work in real systems with a class of finite thermal capacity reservoirs. Math Comp Modell, 2009, 49: 542–547

    Article  Google Scholar 

  25. Gutowicz-Krusin D, Procaccia J, Ross J. On the efficiency of rate processes: Power and efficiency of heat engines. J Chem Phys, 1978, 69: 3898–3906

    Article  Google Scholar 

  26. de Vos A. Efficiency of some heat engines at maximum power conditions. Am J Phys, 1985, 53: 570–573

    Article  Google Scholar 

  27. Angulo-Brown F, Paez-Hernandez R. Endoreversible thermal cycle with a nonlinear heat transfer law. J Appl Phys, 1993, 74: 2216–2219

    Article  Google Scholar 

  28. Zhou S, Chen L, Sun F. Optimal performance of a generalized irreversible Carnot engine. Appl Energy, 2005, 81: 376–387

    Article  Google Scholar 

  29. Huleihil M, Andresen B. Convective heat transfer law for an endoreversible engine. J Appl Phys, 2006, 100: 014911

    Article  Google Scholar 

  30. Andresen B, Gordon J M. Optimal paths for minimizing entropy generation in a common class of finite time heating and cooling processes. Int J Heat Fluid Flow, 1992, 13: 294–299

    Article  Google Scholar 

  31. Badescu V. Optimal paths for minimizing lost available work during usual heat transfer processes. J Non-Equilib Thermodyn, 2004, 29: 53–73

    Article  Google Scholar 

  32. Chen L, Xia S, Sun F. Optimal paths for minimizing entropy generation during heat transfer processes with a generalized heat transfer law. J Appl Phys, 2009, 105: 044907

    Article  Google Scholar 

  33. Xia S, Chen L, Sun F. Optimization for minimizing lost available work during heat transfer processes with complex heat transfer law. Brazilian J Phys, 2009, 39: 98–105

    Google Scholar 

  34. Xia S, Chen L, Sun F. Optimal paths for minimizing entransy dissipation during heat transfer processes with generalized radiative heat transfer law. Appl Math Modell, 2010, 34: 2242–2255

    Article  Google Scholar 

  35. Song H, Chen L, Sun F. Optimal configuration of a class of endoreversible heat engines for maximum efficiency with radiative heat transfer law. Sci China Ser G: Phys Mech Astron, 2008, 51: 1272–1286

    Article  Google Scholar 

  36. Chen L, Zhu X, Sun F, et al. Optimal configurations and performance for a generalized Carnot cycle assuming the heat transfer law Q T)m. Appl Energy, 2004, 78: 305–313

    Article  Google Scholar 

  37. Li J, Chen L, Sun F. Optimal configuration for a finite high-temperature source heat engine cycle with complex heat transfer law. Sci China Ser G: Phys Mech Astron, 2009, 52: 587–592

    Article  Google Scholar 

  38. Xia S, Chen L, Sun F. The optimal path of piston motion for Otto cycle with linear phenomenological heat transfer law. Sci China Ser G: Phys Mech Astron, 2009, 52: 708–719

    Article  Google Scholar 

  39. Xia S, Chen L, Sun F. Maximum power output of a class of irreversible non-regeneration heat engines with a non-uniform working fluid and linear phenomenological heat transfer law. Sci China Ser G: Phys, Mech Astron, 2009, 52: 1961–1970

    Article  Google Scholar 

  40. Ma K, Chen L, Sun F. Optimal paths for a light-driven engine with linear phenomenological heat transfer law. Sci China: Chem, 2010, 53: 917–926

    Article  Google Scholar 

  41. Ge Y, Chen L, Sun F. Optimal paths of piston motion of irreversible Otto cycle heat engines for minimum entropy generation (in Chinese). Sci China: Phys Mech Astron, 2010, 40: 1115–1129

    Google Scholar 

  42. Chen L, Xia S, Sun F. Performance limits for a class of irreversible internal combustion engines. Energy Fuels, 2010, 24: 295–301

    Article  Google Scholar 

  43. Chen L, Xia S, Sun F. Maximum efficiency of an irreversible heat engine with a distributed working fluid and linear phenomenological heat transfer law. Rev Mex Fis, 2010, 56: 231–238

    Google Scholar 

  44. Sieniutycz S, Kuran P. Nonlinear models for mechanical energy production in imperfect generators driven by thermal or solar energy. Int J Heat Mass Transfer, 2005, 48: 719–730

    Article  Google Scholar 

  45. Sieniutycz S, Kuran P. Modeling thermal behavior and work flux in finite-rate systems with radiation. Int J Heat Mass Transfer, 2006, 49: 3264–3283

    Article  Google Scholar 

  46. Kuran P. Nonlinear models of production of mechanical energy in non-ideal generators driven by thermal or solar energy. Ph. D. Thesis, Poland: Warsaw University of Technology, 2006

    Google Scholar 

  47. Sieniutycz S. Hamilton-Jacobi-Bellman equations and dynamic programming for power-maximizing relaxation of radiation. Int J Heat Mass Transfer, 2007, 50: 2714–2732

    Article  Google Scholar 

  48. Sieniutycz S. Dynamical converters with power-producing relaxation of solar radiation. Int J Thermal Sci, 2008, 47: 495–505

    Article  Google Scholar 

  49. Sieniutycz S. Dynamic programming and Lagrange multipliers for active relaxation of resources in nonlinear non-equilibrium systems. Appl Math Modell, 2009, 33: 1457–1478

    Article  Google Scholar 

  50. Sieniutycz S. Dynamic bounds for power and efficiency of non-ideal energy converters under nonlinear transfer laws. Energy, 2009, 34: 334–340

    Article  Google Scholar 

  51. Li J, Chen L, Sun F. Maximum work output of multistage continuous Carnot heat engine system with finite reservoirs of thermal capacity and radiation between heat source and working fluid. Thermal Sci, 2010, 14: 1–9

    Article  Google Scholar 

  52. Sieniutycz S. Carnot controls to unify traditional and work-assisted operation with heat and mass transfer. Int J Thermodyn, 2003, 6: 1–9

    Google Scholar 

  53. Bellman R E. Adaptive Control Processes: A Guided Tour. Princeton: Princeton University Press, 1961

    Google Scholar 

  54. Hu S, Wang Z, Hu W. Optimal control theory and system (in Chinese). Beijing: Science Press, 2005

    Google Scholar 

  55. O’sullivan C T. Newton’s law of cooling—A critical assessment. Am J Phys, 1990, 58: 956–960

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Additional information

This article is published with open access at Springerlink.com

About this article

Cite this article

Xia, S., Chen, L. & Sun, F. Hamilton-Jacobi-Bellman equations and dynamic programming for power-optimization of a multistage heat engine system with generalized convective heat transfer law. Chin. Sci. Bull. 56, 1147–1157 (2011). https://doi.org/10.1007/s11434-010-4095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4095-2

Keywords

Navigation