Skip to main content
Log in

Molecular dynamics simulations of atomic-scale friction in diamond-silver sliding system

  • Articles / Mechanical Engineering
  • Published:
Chinese Science Bulletin

Abstract

Molecular dynamics simulations have been performed to explore the atomic-scale sliding friction, especially the stick-slip friction, in a system consisting of a diamond slider and a silver substrate. The mechanisms of the stick-slip behavior are investigated by considering sliding speeds between 10 m/s and 200 m/s. The analyses of the shear distance between the upmost layer and the downmost layer and displacements of a column of atoms in the slider show that shearing deformation of the slider is the main cause of the stick-slip phenomenon. Our simulations also present that a commensurate fit between the two contact surfaces is unimportant for the stick-slip friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demirel A L, Granick S. Friction fluctuations and friction memory in stick-slip motion. Phys Rev Lett, 1996, 77: 4330–4333

    Article  Google Scholar 

  2. Mate C M, McClelland G M, Erlandsson R, et al. Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett, 1987, 59: 1942–1945

    Article  Google Scholar 

  3. Landman U, Luedtke W D, Ribarsky M W. Structural and dynamical consequences of interactions in interfacial systems. J Vac Sci Technol A, 1989, 7: 2829–2839

    Article  Google Scholar 

  4. Landman U, Luedtke W D, Ringer E M. Atomistic mechanisms of adhesive contact formation and interfacial processes. Wear, 1992, 153: 3–30

    Article  Google Scholar 

  5. Harrison J A, White C T, Colton R J, et al. Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys Rev B, 1992, 46: 9700–9708

    Article  Google Scholar 

  6. Sørensen M R, Jacobsen K W, Stoltze P. Simulations of atomic-scale sliding friction. Phys Rev B, 1996, 53: 2101–2113

    Article  Google Scholar 

  7. Li B, Clapp P C, Rifkin J A, et al. Molecular dynamics simulation of stick-slip. J Appl Phys, 2001, 90: 3090–3094

    Article  Google Scholar 

  8. Kerssemakers J, Hosson J Th M De. A quantitative analysis of surface deformation by stick/slip atomic force microscopy. J Appl Phys, 1997, 82: 3763–3770

    Article  Google Scholar 

  9. Shimizu L, Zhou L, Eda H. Molecular dynamics Simulation of the contact process in AFM surface observations. Tribotest J, 2002, 9: 101–115

    Article  Google Scholar 

  10. Fujisawa S, Sugawara Y, Ito S, et al. The two-dimensional stick-slip phenomenon with atomic resolution. Nanotechnology, 1993, 4: 138–142

    Article  Google Scholar 

  11. Nieminen J A, Sutton A P, Pethica J B. Static junction growth during frictional sliding of metals. Acta Metall Mater, 1992, 40: 2503–2509

    Article  Google Scholar 

  12. Cagin T, Che J, Gardos M N, et al. Simulation and experiments on friction and wear of diamond: A material for MEMS and NEMS application. Nanotechnology, 1999, 10: 278–284

    Article  Google Scholar 

  13. Fujisawa S, Kishi E, Sugawara Y, et al. Atomic-scale friction observed with a two-dimensional frictional-force microscope. Phys Rev B, 1995, 51: 7849–7857

    Article  Google Scholar 

  14. Berendsen H J C, Postma J P M, Vangunsteren W F, et al. Molecular-dynamics with coupling to an external bath. J Chem Phys, 1984, 81: 3684–3690

    Article  Google Scholar 

  15. Brenner D W. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys-Condens Mater, 2002, 14: 783–802

    Article  Google Scholar 

  16. Foiles S M, Baskes M I, Daw M S. Embedded-atom method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B, 1986, 33: 7983–7991

    Article  Google Scholar 

  17. Doyama M, Kogure Y. Embedded atom potentials in fcc and bcc metals. Comput Mater Sci, 1999, 14: 80–83

    Article  Google Scholar 

  18. Daw M S, Foiles S M, Baskes M I. The embedded-atom method: a review of theory and applications. Mater Sci Reports, 1993, 9: 251–310

    Article  Google Scholar 

  19. Girifalco L A, Weizer V G. Application of the morse potential function to cubic metals. Phys Rev, 1959, 114: 687–690

    Article  Google Scholar 

  20. Jeng Y R, Tsai P C, Fang T H. Molecular dynamics studies of atomic-scale tribological characteristics for different sliding systems. Tribol Lett, 2005, 18: 315–329

    Article  Google Scholar 

  21. Rafii T H. Modeling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations. Phys Reports, 2000, 325: 239310

    Google Scholar 

  22. Zhang Q, Hector L G, Jr Cagin T, et al. Atomic simulations of kinetic friction and its velocity dependence at Al/Al and α-Al2O3/α-Al2O3 interfaces. Phys Rev B, 2005, 72: 045406

    Article  Google Scholar 

  23. Zhang T, Wang H, Hu Y Z. Atomic stick-slip friction between commensurate self-assembled monolayers. Tribol Lett, 2003, 14: 69–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanZhong Hu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 50730007, 50675111 and 50721004) and National Basic Research Program of China (Grant No. 2009CB724200)

About this article

Cite this article

Zhu, P., Hu, Y. & Wang, H. Molecular dynamics simulations of atomic-scale friction in diamond-silver sliding system. Chin. Sci. Bull. 54, 4555–4559 (2009). https://doi.org/10.1007/s11434-009-0579-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0579-3

Keywords

Navigation