Skip to main content
Log in

Engineering Deinococcus radiodurans into biosensor to monitor radioactivity and genotoxicity in environment

  • Articles
  • Gene Engineering
  • Published:
Chinese Science Bulletin

Abstract

Based on a genetically modified radioresistant bacteria Deinococcus radiodurans, we constructed a real time whole cell biosensor to monitor radioactivity and genotoxicity in highly radioactive environment. The enhanced green fluorescence protein (eGFP) was fused to the promoter of the crucial DNA damage-inducible recA gene from D. radiodurans, and the consequent DNA fragment (PrecA-egfp) carried by plasmid was introduced into D. radiodurans R1 strain to obtain the biosensor strain DRG300. This engineered strain can express eGFP protein and generate fluorescence in induction of the recA gene promoter. Based on the correlation between fluorescence intensity and protein expression level in live D. radiodurans cells, we discovered that the fluorescence induction of strain DRG300 responds in a remarkable dose-dependent manner when treated with DNA damage sources such as gamma radiation and mitomycin C. It is encouraging to find the widely detective range and high sensitivity of this reconstructed strain comparing with other whole cell biosensors in former reports. These results suggest that the strain DRG300 is a potential whole cell biosensor to construct a detective system to monitor the biological hazards of radioactive and toxic pollutants in environment in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daly M J. Engineering radiation-resistant bacteria for environmental biotechnology. Curr Opin Biotechnol, 2000, 11(3): 280–285

    Article  PubMed  CAS  Google Scholar 

  2. Belkin S. Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol, 2003, 6(3): 206–212

    Article  PubMed  CAS  Google Scholar 

  3. Kohler S, Belkin S, Schmid R D. Reporter gene bioassays in environmental analysis. Fresenius J Anal Chem, 2000, 366(6–7): 769–779

    PubMed  CAS  Google Scholar 

  4. Vollmer A C, Belkin S, Smulski D R, et al. Detection of DNA damage by use of Escherichia coli carrying recA’::lux, uvrA’::lux, or alkA’::lux reporter plasmids. Appl Environ Microbiol, 1997, 63(7): 2566–2571

    PubMed  CAS  Google Scholar 

  5. Davidov Y, Rozen R, Smulski D R, et al. Improved bacterial SOS promoter∷lux fusions for genotoxicity detection. Mutat Res, 2000, 466(1): 97–107

    PubMed  CAS  Google Scholar 

  6. Kostrzynska M, Leung K T, Lee H, et al. Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds. J Microbiol Methods, 2002, 48(1): 43–51

    Article  PubMed  CAS  Google Scholar 

  7. Norman A, Hestbjerg H L, Sorensen S J. Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Appl Environ Microbiol, 2005, 71(5): 2338–2346

    Article  PubMed  CAS  Google Scholar 

  8. Minton K W. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol, 1994, 13(1): 9–15

    Article  PubMed  CAS  Google Scholar 

  9. Battista J R, Earl A M, Park M J. Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol, 1999, 7(9): 362–365

    Article  PubMed  CAS  Google Scholar 

  10. Cox M M, Battista J R. Deinococcus radiodurans-the consummate survivor. Nat Rev Microbiol, 2005, 3(11): 882–892

    Article  PubMed  CAS  Google Scholar 

  11. Lange C C, Wackett L P, Minton K W, et al. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol, 1998, 16(10): 929–933

    Article  PubMed  CAS  Google Scholar 

  12. Daly M J, Ouyang L, Fuchs P, et al. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol, 1994, 176(12): 3508–3517

    PubMed  CAS  Google Scholar 

  13. Brim H, McFarlan S C, Fredrickson J K, et al. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol, 2000, 18(1): 85–90

    Article  PubMed  CAS  Google Scholar 

  14. Lippincott-Schwartz J, Snapp E, Kenworthy A. Studying protein dynamics in living cells. Nat Rev Mol Cell Biol, 2001, 2(6): 444–456

    Article  PubMed  CAS  Google Scholar 

  15. Meima R, Lidstrom M E. Characterization of the minimal replicon of a cryptic Deinococcus radiodurans SARK plasmid and development of versatile Escherichia coli-D. radiodurans shuttle vectors. Appl Environ Microbiol, 2000, 66(9): 3856–3867

    Article  PubMed  CAS  Google Scholar 

  16. Bonacossa A C, Coste G, Sommer S, et al. Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol Genet Genomics, 2002, 268(1): 28–41

    Article  Google Scholar 

  17. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248–254

    Article  PubMed  CAS  Google Scholar 

  18. Lipton M S, Pasa-Tolic L, Anderson G A, et al. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc Natl Acad Sci USA, 2002, 99(17): 11049–11054

    Article  PubMed  CAS  Google Scholar 

  19. Huan C, Zhenjian X, Bing T, et al. Transcriptional profile in response to ionizing radiation at low dose in Deinococcus radiodurans. Prog Nat Sci, 2007, 17(5): 529–536

    Article  Google Scholar 

  20. Zhang C, Wei J, Zheng Z, et al. Proteomic analysis of Deinococcus radiodurans recovering from gamma-irradiation. Proteomics, 2005, 5(1): 138–143

    Article  PubMed  CAS  Google Scholar 

  21. Appukuttan D, Rao A S, Apte S K. Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste. Appl Environ Microbiol, 2006, 72(12): 7873–7878

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua YueJin.

Additional information

Supported by the National Basic Research Program (Grant No. 2004CB19604), National Hi-Tech Development Program (Grant No. 2007AA021305), Distinguished Young Scientist (Grant No. 30425038) and key project from the National Natural Science Foundation of China (Grant No. 30330020)

About this article

Cite this article

GuanJun, G., Lu, F., HuiMing, L. et al. Engineering Deinococcus radiodurans into biosensor to monitor radioactivity and genotoxicity in environment. Chin. Sci. Bull. 53, 1675–1681 (2008). https://doi.org/10.1007/s11434-008-0224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0224-6

Keywords

Navigation