Skip to main content
Log in

Melt-Water-Pulse (MWP) events and abrupt climate change of the last deglaciation

  • Published:
Chinese Science Bulletin

Abstract

The last deglaciation is characterized by massive ice sheet melting, which results in an average sea-level rise of ∼120−140 m. At least three major Melt-Water-Pulse (MWP) events (19ka-MWP, MWP-1A and MWP-1B) are recognizable for the last deglaciation, of which MWP-1A event lasting from ∼14.2 to ∼13.7 ka B.P. is of the most significance. However, the accurate timing and source of MWP-1A event remain debatable and controversial. It has long been postulated that meltwater of the last deglaciation pouring into the North Atlantic resulted in a slowdown or even a shutdown of the thermohaline circulation (THC) which subsequently affected the global climate change. Accordingly, the focus of this debate consists in establishing a reasonable relationship between MWP events and abrupt climate change. Here we summarize a variety of geological and model results for the last deglaciation, reaching a conclusion that the major MWP events did not correspond with the rigorous stadials, nor always happened within climate reversal intervals. MWP events of the last deglaciation had very weak influences on the intensity of the THC and were not able to trigger a collapse of the global climate. We need to reevaluate the influences of the temporal meltwater variability on the global climate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahmstorf S. The current climate. Nature, 2003, 421: 699

    Article  PubMed  CAS  Google Scholar 

  2. Clark P U, Pisias N G, Stocker T F, et al. The role of the thermohaline circulation in abrupt climate change. Nature, 2002, 415: 863–869

    Article  PubMed  CAS  Google Scholar 

  3. Rahmstorf S. Ocean circulation and climate during the past 120,000 years. Nature, 2002, 419: 207–214

    Article  PubMed  CAS  Google Scholar 

  4. Wang S W. Advances in Modern Climatology Research (in Chinese). Beijing: Meteorology Press, 2001. 371–396

    Google Scholar 

  5. Broecker W S, Peteet D M, Rind D. Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 1985, 315: 21–26

    Article  CAS  Google Scholar 

  6. Rahmstorf S. Rapid climate transitions in a coupled ocean-atmosphere model. Nature, 1994, 372: 82–85

    Article  CAS  Google Scholar 

  7. Rahmstorf S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 1995, 378: 145–149

    Article  CAS  Google Scholar 

  8. Manabe S, Stouffer R J. Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature, 1995, 378: 165–167

    Article  CAS  Google Scholar 

  9. Ganopolski A, Rahmstrof S. Rapid changes of glacial climate simulated in a coupled climate model. Nature, 2001, 409: 153–158

    Article  PubMed  CAS  Google Scholar 

  10. Knutti R, Fluckiger J, Stocker T F, et al. Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature, 2004, 430: 851–856

    Article  PubMed  CAS  Google Scholar 

  11. Peltier W R. On the hemispheric origins of meltwater pulse 1a. Quat Sci Rev, 2005, 24: 1655–1671

    Article  Google Scholar 

  12. Crosta X. Late Quaternary Antarctic sea-ice history: Evidence from deep-sea sediment records. PAGES News, 2007, 15(2): 13–14

    Google Scholar 

  13. Clark P U, Mix A C. Ice sheets and sea level of the Last Glacial Maximum. Quat Sci Rev, 2002, 21: 1–7

    Article  Google Scholar 

  14. Denton G H, Hughes T J. The Last Great Ice Sheets. New York: Wiley, 1981. 484

    Google Scholar 

  15. Peltier W R. On eustatic sea level history: Last Glacial Maximum to Holocene. Quat Sci Rev, 2002, 21: 377–396

    Article  Google Scholar 

  16. Marshall S J, James T S, Clarke G K C. North American Ice Sheet reconstructions at the Last Glacial Maximum. Quat Sci Rev, 2002, 21: 175–192

    Article  Google Scholar 

  17. Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat Sci Rev, 2002, 21: 203–231

    Article  Google Scholar 

  18. Siegert M J, Dowdeswell J A, Melles M. Late Weichselian Glaciation of the Russian High Arctic. Quat Res, 1999, 52: 273–285

    Article  Google Scholar 

  19. Denton G H, Hughes T J. Reconstructing the Antarctic Ice Sheet at the Last Glacial Maximum. Quat Sci Rev, 2002, 21: 193–202

    Article  Google Scholar 

  20. Shackleton N J. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 2000, 289: 1897–1902

    Article  PubMed  Google Scholar 

  21. Yokoyama Y, Lambeck K, Deckker P D. Timing of the Last Glacial Maximum from observed sea-level minima. Nature, 2000, 406: 713–716

    Article  PubMed  CAS  Google Scholar 

  22. Peltier W R, Fairbanks R G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat Sci Rev, 2006, 25: 3322–3337

    Article  Google Scholar 

  23. Fairbanks R G. A 17000-year glacio-eustatic sea level record-influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 1989, 342: 637–642

    Article  Google Scholar 

  24. Bard E, Hamelin B, Fairbanks R G, U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. Nature, 1990, 346: 456–458

    Article  CAS  Google Scholar 

  25. Bard E, Hamelin B, Fairbanks R G, et al. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature, 1990, 345: 405–410

    Article  CAS  Google Scholar 

  26. Bard E, Hamelin B, Arnold M, et al. Deglacial sea-level record from Tahiti corals and the timing of global melwater discharge. Nature, 1996, 241–244

  27. Fairbanks R G, Mortlock R A, Chiu T C, et al. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat Sci Rev, 2005, 24: 1781–1796

    Article  Google Scholar 

  28. Stanford J D, Rohling E J, Hunter S E, et al. Timing of meltwater pulse 1a and climate responses to meltwater injections. Paleoceanography, 2006, 21: PA4103, doi: 10.1029/2006PA001340

    Article  Google Scholar 

  29. Rasmussen S O, Andersen K K, Svensson A M, et al. A new Greenland ice core chronology for the last glacial termination, J Geophys Res, 2006, 111: D06102, doi: 10.1029/2005JD006079

    Article  Google Scholar 

  30. Clark P U, Marshall M A, Mix A C, et al. Rapid rise of sea level 19,000 years ago and its global implications. Science, 2004, 304: 1141–1144

    Article  PubMed  CAS  Google Scholar 

  31. Rinterknecht V R, Clark P U, Raisbeck G M, et al. The last deglaciation of the southeastern sector of the Scandinavian ice sheet. Science, 2006, 311: 1449–1452

    Article  PubMed  CAS  Google Scholar 

  32. Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda Shelf: A Late-Glacial sea-level record. Science, 2000, 288: 1033–1035

    Article  PubMed  CAS  Google Scholar 

  33. Pelejero C, Grimalt J O, Heilig S, et al. High-resolution Uk37 temperature reconstruction in the South China Sea over the past 220 kyr. Paleoceanography, 1997, 14(2): 224–231

    Article  Google Scholar 

  34. Kienast M, Hanebuth T J J, Pelejero C, et al. Synchroneity of meltwater pulse 1a and the Bolling warming: New evidence from the South China Sea. Geology, 2003, 31(1): 67–70

    Article  Google Scholar 

  35. Webster J M, Clague D A, Riker-Coleman K, et al. Drowning of the −150 m reef off Hawaii: A casualty of global meltwater pulse 1A. Geology, 2004, 32(3): 249–252

    Article  Google Scholar 

  36. Liu J P, Milliman J D. Reconsidering Melt-water Pulses 1A and 1B: Global impacts of rapid sea level rise. J Ocean Univ Chin, 2004, 3(2): 183–190

    Article  Google Scholar 

  37. Reimer R W, Reimer P J. Marine reservoir corrections and the calibration curve. PAGES News, 2006, 14(3): 12–13

    Google Scholar 

  38. Hughen K, Lehman S, Southon J, et al. 14C activity and global carbon cycle changes over the past 50,000 Years. Science, 2004, 303: 202–207

    Article  PubMed  CAS  Google Scholar 

  39. Sarnthein M, Grootes P M, Kennett J P, et al. 14C reservoir ages show deglacial changes in ocean currents and carbon cycle. AGU Monograph, 2007, 173: 175–196

    Google Scholar 

  40. Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Mar Geol, 1999, 156: 245–284

    Article  Google Scholar 

  41. Kienast M, Steinke S, Stattegger K, et al. Synchronous tropical South China Sea SST change and greenland warming during Deglaciation. Science, 2001, 291: 2132–2134

    Article  PubMed  CAS  Google Scholar 

  42. Manabe S, Stouffer R J. Coupled ocean-atmosphere model response to freshwater input: Comparison to Younger Dryas event. Paleoceanography, 1997, 12(2): 321–336

    Article  Google Scholar 

  43. Clark P U, Alley R B, Keigwin L D, et al. Original of the first global meltwater pulse following the last glacial maximum. Paleoceanography, 1996, 11(5): 563–577

    Article  Google Scholar 

  44. Tarasov L, Peltier W R. Arctic freshwater forcing of the Younger Dryas cold reversal. Nature, 2005, 435: 662–665

    Article  PubMed  CAS  Google Scholar 

  45. Broecker W S, Kennett J P, Flower B P. Routing of meltwater from the Laurentide ice sheet during the Younger Dryas cold episode. Science, 1989, 341: 318–321

    Google Scholar 

  46. Marshall S J, Clarke G K C. Modeling North American freshwater runoff through the last glacial cycle. Quat Res, 1999, 52: 300–315

    Article  Google Scholar 

  47. Ruddiman W F. Earth’s Climate, Past and Future. New York: W. H. Freeman and Company, 2000. 274–329

    Google Scholar 

  48. Polyak L, Lehman S J, Gataullin V, et al. Two-step deglaciation of the southeastern Barents Sea. Geology, 1995, 23(6): 567–571

    Article  Google Scholar 

  49. Clark P U, Mitrovica J X, Milne G A, et al. Sea-Level fingerprinting as a direct test for the source of global meltwater pulse IA. Science, 2002, 295: 2438–2442

    PubMed  CAS  Google Scholar 

  50. Weaver A J, Saenko O A, Clark P U, et al. Meltwater pulse 1A from Antarctica as a trigger of the Bolling-Allerod Warm interval. Science, 2003, 299: 1709–1713

    Article  PubMed  CAS  Google Scholar 

  51. Bassett S E, Milne G A, Mitrovica J X, et al. Ice sheet and solid earth influences on far-field sea-level histories. Science, 2005, 309: 925–928

    Article  PubMed  CAS  Google Scholar 

  52. Kanfoush S L, Hodell D A, Charles C D, et al. Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation. Science, 2000, 288: 1815–1818

    Article  PubMed  CAS  Google Scholar 

  53. Shackleton N J, Hall M A, Vincent E. Phase relationships between millennial-scale events 64000-24000 years ago. Paleoceanography, 2000, 15(6): 565–569

    Article  Google Scholar 

  54. Blunier T, Brook E J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 2001, 291: 109–112

    Article  PubMed  CAS  Google Scholar 

  55. Anderson J B, Shipp S S, Lowe A L, et al. The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review. Quat Sci Rev, 2002, 21: 49–70

    Article  Google Scholar 

  56. Licht K J. The Ross Sea’s contribution to eustatic sea level during meltwater pulse 1A. Sediment Geol, 2004, 165: 343–353

    Article  Google Scholar 

  57. McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 2004, 428: 834–837

    Article  PubMed  CAS  Google Scholar 

  58. Piotrowski A M, Goldstein S L, Hemming S R, et al. Intensification and variability of ocean thermohaline circulation through the last deglaciation. Earth Planet Sci Lett, 2004, 225: 205–220

    Article  CAS  Google Scholar 

  59. Broecker W S. Was the Younger Dryas Triggered by a Flood? Science, 2006, 312: 1146–1148

    Article  PubMed  CAS  Google Scholar 

  60. Clark P U, Marshall S J, Clarke G K C, et al. Freshwater forcing of abrupt climate change during the last glaciation. Science, 2001, 293: 283–287

    Article  PubMed  CAS  Google Scholar 

  61. Teller J T, Leverington D W, Mann J D. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quat Sci Rev, 2002, 21: 879–887

    Article  Google Scholar 

  62. Lowell T, Fisher T G, Comer G C, et al. Testing the lake Agassiz meltwater trigger for the Younger Dryas. EOS, 2005, 86(40): 365–367

    Article  Google Scholar 

  63. Lohmannn G, Schulz M. Reconciling Boling warmth with peak deglacial meltwater discharge. Paleoceanography, 2000, 15(5): 537–540

    Article  Google Scholar 

  64. Moore T C Jr. The Younger Dryas: From whence the fresh water? Paleoceanography, 2005, 20: PA4021, doi: 10.1029/2005PA001170

    Article  Google Scholar 

  65. Jennings A E, Haldb M, Smithc M, et al. Freshwater forcing from the Greenland Ice Sheet during the Younger Dryas: evidence from southeastern Greenland shelf cores. Quat Sci Rev, 2006, 25: 282–298

    Article  Google Scholar 

  66. Barrows T T, Lehman S J, Fifield L K, et al. Absence of cooling in New Zealand and the adjacent ocean during the Younger Dryas chronozone. Science, 2007, 318: 86–89

    Article  PubMed  CAS  Google Scholar 

  67. NGRIP members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 2004, 431: 147–151

    Article  Google Scholar 

  68. Cheng H, Edwards R L, Wang Y, et al. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology, 2006, 34(3): 217–220

    Article  CAS  Google Scholar 

  69. Kelly M J, Edwards R L, Cheng H, et al. High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination II. Paleogeogr Paleoclimatol Paleoecol, 2006, 236: 20–38

    Article  Google Scholar 

  70. Chen S, Wang Y, Kong X, et al. A possible Younger Dryas-type event during Asian monsoonal Termination3. Sci China Ser D-Earth Sci, 2006, 49(9): 982–990

    Article  CAS  Google Scholar 

  71. Spahni R, Chappellaz J, Stocker T F, et al. Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science, 2005, 310: 1317–1321

    Article  PubMed  CAS  Google Scholar 

  72. Caillon N, Severinghaus J P, Jouzel J, et al. Timing of atmospheric CO2 and Antarctic temperature changes across termination III. Science, 2003, 299: 1728–1731

    Article  PubMed  CAS  Google Scholar 

  73. Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 1999, 399: 429–436

    Article  CAS  Google Scholar 

  74. Siegenthaler U, Stocker T F, Monnin E, et al. Stable carbon cycleclimate relationship during the late Pleistocene. Science, 2005, 310: 1313–1317

    Article  PubMed  CAS  Google Scholar 

  75. Jouzel J, Masson-Delmotte V, Cattani O, et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 2007, 317: 793–796

    Article  PubMed  CAS  Google Scholar 

  76. Sima A, Paull A, Schulz M, et al. The Younger Dryas— an intrinsic feature of late Pleistocene climate change at millennial timescales. Earth Planet Sci Lett, 2004, 222: 741–750

    Article  CAS  Google Scholar 

  77. Broecker W S. Abrupt climate change: causal constraints provided by the paleoclimate record. Earth-Sci Rev, 2000, 51: 137–154

    Article  Google Scholar 

  78. Hughen K A, Overpeck J T, Lehman S J, et al. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature, 1998, 391: 65–68

    Article  CAS  Google Scholar 

  79. Hughen K A, Southon J R, Lehman S J, et al. Synchronous radiocarbon and climate shifts during the last deglaciation. Science, 2000, 290: 1951–1954

    Article  PubMed  CAS  Google Scholar 

  80. Monnin E, Indermuhle A, Dällenbach A, et al. Atmospheric CO2 concentrations over the last glacial termination. Science, 2001, 291: 112–114

    Article  PubMed  CAS  Google Scholar 

  81. Laskar J. The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones. Icarus, 1990, 88: 266–291

    Article  Google Scholar 

  82. Visser K, Thunell R, Stott L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature, 2003, 421: 152–155

    Article  PubMed  CAS  Google Scholar 

  83. Martin P, Archer D, Lea D W. Role of deep sea temperature in the carbon cycle during the last glacial. Paleoceanography, 2005, 20: PA2015, doi: 10.1029/2003PA000914

    Article  Google Scholar 

  84. Stott L, Timmermann A, Thunell R. Southern hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming. Science, 2007, 318: 435–438

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to EnQing Huang.

Additional information

Supported by the National Natural Science foundation of China (Grant Nos. 40476027, 40776028, 40621063 and 40331002), the National Key Basic Research Specialized Foundation (Grant No. 2007CB815902), the FANEDD (Grant No. 2005036) and Shanghai Rising-Star Program (Type A, Grant No. 06QA14052)

We are grateful to Prof. Wang Pinxian for his beneficial suggestion.

About this article

Cite this article

Huang, E., Tian, J. Melt-Water-Pulse (MWP) events and abrupt climate change of the last deglaciation. Chin. Sci. Bull. 53, 2867–2878 (2008). https://doi.org/10.1007/s11434-008-0206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0206-8

Keywords

Navigation