Skip to main content
Log in

Structure and 57Fe conversion electron Mössbauer spectroscopy study of Mn-Zn ferrite nanocrystal thin films by electroless plating in aqueous solution

  • Articles
  • Condensed Matter Physics
  • Published:
Chinese Science Bulletin

Abstract

Mn1−x Zn x Fe2O4 thin films with various Zn contents and of different thickness were synthesized on glass substrates directly by electroless plating in aqueous solution at 90°C without heat treatment. The Mn-Zn ferrite films have a single spinel phase structure and well-crystallized columnar grains growing perpendicularly to the substrates. The results of conversion electron 57Fe Mössbauer spectroscopy (CEMS) indicate that the cation distribution of Mn1−x Zn x Fe2O4 ferrite nanocrystal thin films fabricated by electroless plating is different from the bulk materials’ and a great quantity of Fe3+ ions are still present on A sites for x>0.5. When the Zn content of the films increases, Fe3+ ions in the films transfer from A sites to B sites and the hyperfine magnetic field reduces, suggesting that Zn2+ has strong chemical affinity towards the A sites. On the other side, with the increase of the thickness of the films, Fe3+ ions, at B sites in the spinel structure, increase and the array of magnetic moments no longer lies in the thin film plane completely. At x = 0.5, H c and M s of Mn1−x Zn x Fe2O4 thin films show a minimum of 3.7 kA/m and a maximum of 419.6 kA/m, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams C M, Chrisey D B, Lubitz P, et al. The magnetic and structural properties of pulsed laser deposited epitaxial MnZn-ferrite films. J Appl Phys, 1994, (75): 1676–1680

  2. Welch R G, Neamtu J, Rogalski M S, et al. Polycrystalline MnZn ferrite films prepared by pulsed laser deposition. Mater Lett, 1996, (29): 199–203

  3. Kiyomura T, Gomi M. Electrical properties of MgO insulating layers in spin-dependent tunneling junctions using Fe3O4. J Appl Phys, 2000, (88): 4768–4771

  4. Suzuki Y, et al. Structure and magnetic properties of epitaxial spinel ferrite thin films. Appl Phys Lett, 1996, (68): 714–716

  5. Liu Y, Cao J W, Yang Z. The structure and magnetic properties of Mn-Zn ferrite thin films fabricated by alternately sputtering. Mater Sci Eng B, 2005, (127): 108–111

  6. Nakano M, Akase M, Fukunaga H, et al. Permeability in PLD-made Mn-Zn ferrite thin films by low-temperature process. J Magn Magn Mater, 2002, (242–245): 157–159

  7. Son S, Swaminathan R, McHenry M E. Structure and magnetic properties of rf thermally plasma synthesized Mn and Mn-Zn ferrite nanoparticles. J Appl Phys, 2003, (93): 7495–7497

  8. Abe M, Itoh T, Tamaura Y et al. Ferrite-organic multilayer film for microwave monolithic integrate circuits prepared by ferrite plating based on the spray-spin-coating method. J Appl Phys, 1988 (63): 3774–3776

  9. Abe M, Tanno Y, Tamaura Y. Direct formation of ferrite films in wet process. J Appl Phys, 1985, (57): 3795–3797

  10. Abe M, Tamaura Y. Ferrite plating in aqueous solution: New technique for preparing magnetic thin film. J Appl Phys, 1984, 55: 2614–2616

    Article  CAS  Google Scholar 

  11. Abe M, Tamaura Y, Goto Y, et al. High speed deposition of high-quality ferrite films from aqueous solution at low temperatures (⩽90°C). J Appl Phys, 1987, 61: 3211–3213

    Article  CAS  Google Scholar 

  12. Subramani A K, Matsushita N, Watanabe T, et al. A simple process for ferrite film preparation from one solution without using hazardous oxidizing agent. J Appl Phys, 2007, 101: 09M504

    Google Scholar 

  13. Harris V G, Koon N C, Williams C M, et al. Cation distribution in NiZn-ferrite films via extended X-ray absorption fine structure. Appl Phys Lett, 1996, 68: 2082–2084

    Article  CAS  Google Scholar 

  14. Taheri M, Carpenter E E, Cestone V, et al. Magnetism and structure of ZnxFe3−x O4 films processed via spin-spray deposition. J Appl Phys, 2002, 91: 7595–7597

    Article  CAS  Google Scholar 

  15. Nishimura K, Uchida H, Inoue M. Magnetic micromachines prepared by ferrite plating technique. J Appl Phys, 2003, 93: 6712–6714

    Article  CAS  Google Scholar 

  16. Zhang Q, Itoh T, Abe M, et al. Wet-process preparation of amorphous Y-Fe oxide films ferromagnetic at room temperature. J Appl Phys, 1994, 75: 6094–6096

    Article  CAS  Google Scholar 

  17. Ltoh T, Hori S, Abe M, et al. Light-enhanced ferrite plating of Fe3−x M xO4 (M=Ni, Zn, Co, and Mn) films in an aqueous solution. J Appl Phys, 1991, 69: 5911–5914

    Article  Google Scholar 

  18. Harris V G, Koon N C, Williams C M, et al. Cation distribution in NiZn-ferrite films determined using X-ray absorption fine structure. J Appl Phys, 1996, 79: 4561–4563

    Article  CAS  Google Scholar 

  19. Abe M, Lshihara T, Kitamoto Y. Magnetite film growth at 30°C on organic monomolecular layer, mimicking bacterial magnetosome synthesis. J Appl Phys, 1999, 85: 5705–5707

    Article  CAS  Google Scholar 

  20. Kitamoto Y, Zhang F, Abe M, et al. Increase in perpendicular coercivity of Co-Ni ferrite-plated films by Zn ferrite underlayers. J Appl Phys, 2000, 87: 6878–6880

    Article  CAS  Google Scholar 

  21. Kondo K, Yoshida S, Ono H, et al. Spin sprayed Ni(-Zn)-Co ferrite films with natural resonance frequency exceeding 3 GHz. J Appl Phys, 2007, 101: 09M502

    Google Scholar 

  22. Kondo K, Chiba T, Ono H, et al. Conducted noise suppression effect up to 3 GHz by NiZn ferrite film plated at 90°C directly onto printed circuit board. J Appl Phys, 2003, 93: 7130–7132

    Article  CAS  Google Scholar 

  23. Matsushita Nobuhiro, Nakamura Tatsuro, Abe M. Spin-sprayed Ni-Zn-Co ferrite films with high μ″ > 100 in extremely wide frequency range 100 MHz-1 GHz. J Appl Phys, 2003, 93: 7133–7135

    Article  CAS  Google Scholar 

  24. Matsushita N, Chong C P, Mizutani T, et al. Ni-Zn ferrite films with high permeability (μ′= ∼30, μ″= ∼30) at 1 GHz prepared at 90°C. J Appl Phys, 2002, 91: 7376–7378

    Article  CAS  Google Scholar 

  25. Matsushita N, Abe T, Kondo K, et al. Highly resistive Mn-Zn ferrite films prepared from aqueous solution for GHz conducted noise suppressors. J Appl Phys, 2005, 97: 10G106

    Google Scholar 

  26. Fu C M, Hsu H S, Chao Y C, et al. High-frequency transport properties of spin-spray plated Ni-Zn ferrite thin films. J Appl Phys, 2003, 93: 7127–7129

    Article  CAS  Google Scholar 

  27. Miyasaka J, Tada M, Abe M, et al. Fe3O4+δ films prepared by “one-liquid” spin spray ferrite plating for gigahertz-range noise suppressors. J Appl Phys, 2006, 99: 08M916

  28. Morrish A H, Clark P E. High-field Mössbauer study of manganese-zinc ferrites. Phys Rev B, 1975, 11: 278–286

    Article  CAS  Google Scholar 

  29. Snelling E C. Soft Ferrites: Properties and Applications. London: Butterworths, 1988. 1–7

    Google Scholar 

  30. Son S, Taheri M, Carpenter E, et al. Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch. J Appl Phys, 2002, 91: 7589–7591

    Article  CAS  Google Scholar 

  31. Gorter E W. Saturation magnetization and crystal chemistry of ferrimagnetic oxides. Philips Res Rep, 1954, 9(Suppl): 295–320

    CAS  Google Scholar 

  32. Alxander K. X-ray Diffraction Procedures. New York: Wiley, 1970. 491

    Google Scholar 

  33. Segal D L, Woodhead J L. New developments in gel processing. Proc Br Ceram Soc, 1986, 38: 245–250

    CAS  Google Scholar 

  34. Hastings J M, Corliss L M. Magnetic structure of manganese chromite. Phys Rev, 1962, 126: 556–565

    Article  CAS  Google Scholar 

  35. Sawatzky G A, van der Woude F, Morrish A H. Note on cation distribution of MnFe2O4. Phys Lett A, 1967, 25: 147–148

    Article  CAS  Google Scholar 

  36. König U, Chol G. Röntgenbeugungs-und Neutronenbeugungsuntersuchungen an Ferriten der reihe MnxZn1−x Fe2O4. J Appl Crystallogr, 1968, 1: 124–126

    Article  Google Scholar 

  37. Chen J P, Sorensen C M, Klabunde K J, et al. Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B, 1996, 54: 9288–9296

    Article  CAS  Google Scholar 

  38. Rath C, Anand S, Das R P, et al. Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn-Zn ferrite. J Appl Phys, 2002, 91: 2211–2215

    Article  CAS  Google Scholar 

  39. Li F S, Ren L Y, Niu Z P, et al. Magnetic moment distributions in α-Fe nanowire array. Sci China Ser B-Chem, 2003, 46(1): 90–95

    CAS  Google Scholar 

  40. Kopcewicz M, Lucinski T, Stobiecki F, et al. Mössbauer study of the influence of thermal treatment on giant magnetoresistance and interface structure in Fe/Cr multilayers. J Appl Phys, 1999, 85: 5039–5041

    Article  CAS  Google Scholar 

  41. Rath C, Mishra N C, Anand S, et al. Appearance of superparamagnetism on heating nanosize Mn0.65Zn0.35Fe2O4. Appl Phys Lett, 2000, 76: 475–477

    Article  CAS  Google Scholar 

  42. Kodama R H, Berkowitz A E Jr, et al. Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett, 1996, 77: 394–397

    Article  PubMed  CAS  Google Scholar 

  43. Pal M, Brahma P, Chakravorty D, et al. Nanocrystalline nickel-zinc ferrite prepared by the glass-ceramic route. J Magn Magn Mater, 1996, 164: 256–260

    Article  CAS  Google Scholar 

  44. Coey J M D. Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys Rev Lett, 1971, 27: 1140–1142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li FaShen.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 90505007)

About this article

Cite this article

Sun, J., Wang, X., Liu, J. et al. Structure and 57Fe conversion electron Mössbauer spectroscopy study of Mn-Zn ferrite nanocrystal thin films by electroless plating in aqueous solution. Chin. Sci. Bull. 53, 321–328 (2008). https://doi.org/10.1007/s11434-008-0045-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0045-7

Keywords

Navigation