Skip to main content
Log in

Studies of new EST-SSRs derived from Gossypium barbadense

  • Articles
  • Geneticss
  • Published:
Chinese Science Bulletin

Abstract

Existing cotton EST-SSR markers are mostly derived from Gossypium arboreum and Gossypium hirsutum, but EST-SSR markers from Gossypium barbadense are scarce. One hundred and nineteen EST-SSRs were developed based on 98 unique ESTs from a cDNA library constructed in our laboratory using developing fibers from G. barbadense cv. Pima3–79. Among the SSRs, trinucleotide AAG appeared at a high frequency of 11.76%. 36 accessions (consisting of 13 diploids of the A genome, 11 diploids of the D genome and 12 allotetraploids of the AD genome) were employed to test new EST-SSRs. 76 EST-SSRs were successfully amplified, and 313 polymorphic fragments were yielded, with an average of 4.11 fragments per primer pair. The PIC ranged from 0.17 to 0.95 with an average of 0.53. Based on Jaccard’s genetic similarity coefficient, these 36 accessions were clustered into three groups. 21 EST-SSRs exhibited polymorphisms in BC1 population ((Emian22 × Pima3–79) × Emian22), 24 polymorphic loci were generated, while 22 of the 24 polymorphic loci were integrated with our interspecific BC1 backbone genetic linkage map, and anchored in 12 chromosomes. This study effectively proved that EST-SSRs from G. barbadense are valuable for genetic diversity analysis and genetic mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hof J V, Saha S. Cotton fibers can undergo cell division. Am J Bot, 1997, 84(9): 1231–1235

    Article  Google Scholar 

  2. Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001, 127: 1361–1366

    Article  Google Scholar 

  3. Shen X L, Guo W Z, Zhu X F. Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed, 2005, 15: 169–181

    Article  Google Scholar 

  4. Qamaruz Z F, Michael F F, Parker J S, et al. Molecular techniques employed in the assessment of genetic diversity: A review focusing on orchid conservation. Lindleyana, 1998, 13: 259–283

    Google Scholar 

  5. Powell W, Machray G C, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci, 1996, 1: 215–222

    Google Scholar 

  6. Tautz D, Schotterer C. Simple sequences. Curr Opin Genet, 1994, 4: 832–837

    Article  Google Scholar 

  7. Gupta P K, Balyan H S, Sharma P C, et al. Microsatellites in plants: a new class of molecular markers. Curr Sci, 1996, 70: 45–54

    Google Scholar 

  8. Weber J L, May P E. Abundance class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet, 1989, 44: 388–396

    Google Scholar 

  9. Combes M C, Andrzejewski S, Anthony F, et al. Characterization of microsatellite loci in Coffea arabica and related coffee species. Mol Ecol, 2000, 8: 1171–1193

    Google Scholar 

  10. Saha S, Karaca M, Jenkins J N, et al. Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica, 2003, 130: 355–364

    Article  Google Scholar 

  11. Qureshi S N, Saha S, Kantety R V, et al. EST-SSR: A new class of genetic markers in cotton. J Cotton Sci, 2004, 8: 112–123

    Google Scholar 

  12. Chee P W, Rong J, Williams C D, et al. EST derived PCR-based markers for functional gene homologues in cotton. Genome, 2004, 47: 449–462

    Article  Google Scholar 

  13. Han Z G, Guo W Z, Song X, et al. Genetic mapping of EST derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics, 2004, 272: 308–327

    Article  Google Scholar 

  14. Han Z G, Wang C B, Song X L, et al. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet, 2006, 112: 430–439

    Article  Google Scholar 

  15. Park Y H, Alabady M S, Ulloa M, et al. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population. Mol Genet Genomics, 2005, 274: 428–441

    Article  Google Scholar 

  16. Taliercio E, Allen R D, Essenberg M, et al. Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs. Genome, 2006, 49: 306–319

    Article  Google Scholar 

  17. Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127

    Google Scholar 

  18. Lin Z X, He D H, Zhang X L, et al. Linkage map construction and mapping QTLs for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed, 2005, 124: 180–187

    Article  Google Scholar 

  19. Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314–331

    Google Scholar 

  20. Anderson J A, Churchill G A, Autrique J E, et al. Optimizing parental selection for genetic linkage maps. Genome, 1993, 36: 181–186

    Article  Google Scholar 

  21. Rohlf F J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1, User Guide. New York: Exeter Software, 2000

    Google Scholar 

  22. Sokal R R, Michener C D. A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull, 1958, 28: 1409–1438

    Google Scholar 

  23. Sneath, P H, Sokal R R. Numerical Taxonomy: The Principal and Practice of Numerical Classification. San Francisco: W. H. Freeman and Company, 1973

    Google Scholar 

  24. Lander E S, Green P, Abrahamson J, et al. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181

    Article  Google Scholar 

  25. Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1994, 12: 172–175

    Google Scholar 

  26. Chin E C L. Maize simple repetitive DNA sequences: Abundance and allele variation. Genome, 1996, 156: 847–854

    Google Scholar 

  27. Temnykh S, Park W D, Ayres N, et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 697–712

    Article  Google Scholar 

  28. Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genet, 2002, 30: 194–200

    Article  Google Scholar 

  29. Thiel T, Michalek W, Varshney R K, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet, 2003, 106: 411–422

    Google Scholar 

  30. Fryxell P A. A revised taxonomic interpretation of Gossypium L. (Makvaceae). Rheedea, 1992, 2(2): 108–165

    Google Scholar 

  31. Wang C B, Guo W Z, Cai C P, et al. Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. Chin Sci Bull, 2006, 51(5): 557–561

    Article  Google Scholar 

  32. Gao L F, Jing R L, Huo N X, et al. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet, 2004, 108: 1392–1400

    Article  Google Scholar 

  33. Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: Features and applications. Trends Biotechnol, 2005, 23: 48–55

    Article  Google Scholar 

  34. Frelichowski J E, Palmer M B, Main D, et al. Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends. Mol Gen Genomics, 2006, 275: 479–491

    Article  Google Scholar 

  35. Blair M W, Giraldo M C, Buendía H F, et al. Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet, 2006, 113: 100–109

    Article  Google Scholar 

  36. Rong J, Bowers J E, Schulze S R, et al. Comparative genomics of Gossypium and Arabidopsis: Unraveling the consequences of both ancient and recent polyploidy. Genome Res, 2005, 15: 1198–1210

    Article  Google Scholar 

  37. Scott K D, Eggler P, Seaton G, et al. Analysis of SSRs derived from grapes EST. Theor Appl Genet, 2000, 100: 723–726

    Article  Google Scholar 

  38. Eujayl I, Sorrells M E, Wolters P, et al. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002, 104: 399–407

    Article  Google Scholar 

  39. Kantety R V, Rota M L, Matthews D E, et al. Data mining for simple sequence repeats in expressed sequence tags from barely, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48: 501–510

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang XianLong.

Additional information

Contributed equally to this work

Support from the Ministry of Science and Technology of China (973 Project, Grant No. 2004 CB117301) and the National Natural Science Foundation of China (Grant No. 30600396)

About this article

Cite this article

Zhang, Y., Lin, Z., Li, W. et al. Studies of new EST-SSRs derived from Gossypium barbadense . CHINESE SCI BULL 52, 2522–2531 (2007). https://doi.org/10.1007/s11434-007-0399-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0399-2

Keywords

Navigation