Skip to main content
Log in

3D nano-printed geometric phase metasurfaces for generating accelerating beams with complex amplitude manipulation

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Metasurface, a forefront in emerging optical devices, has demonstrated remarkable potential for complex amplitude manipulation of light beams. However, prevailing approaches face challenges in spatial resolution and complexities associated with integrating dynamic phases, impeding the simplified design and reproducible fabrication of metasurfaces. Here, we introduce an innovative approach for complex amplitude modulation within 3D nano-printed geometric phase metasurfaces. Our approach enables the generation of self-accelerating beams by encoding amplitude through phase-only manipulation, achieving high spatial resolution. Notably, this method circumvents the conventional need to adjust the geometric parameters of metasurface unit structures for amplitude manipulation, offering a streamlined and efficient route for design and fabrication complexity. This novel methodology holds promise for expedited and low-cost manufacturing of complex amplitude manipulation metasurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. N. K. Efremidis, Z. Chen, M. Segev, and D. N. Christodoulides, Optica 6, 686 (2019), arXiv: 1904.02933.

    Article  ADS  Google Scholar 

  2. T. Latychevskaia, D. Schachtler, and H. W. Fink, Appl. Opt. 55, 6095 (2016), arXiv: 1602.06465.

    Article  ADS  Google Scholar 

  3. J. Ling, Q. Yang, S. Zhang, Q. Lu, S. Liu, and C. Guo, Appl. Opt. 56, 7059 (2017).

    Article  ADS  Google Scholar 

  4. J. Wen, L. Chen, B. Yu, J. B. Nieder, S. Zhuang, D. Zhang, and D. Lei, ACS Nano 15, 1030 (2021).

    Article  Google Scholar 

  5. B. Yu, J. Wen, L. Chen, L. Zhang, Y. Fan, B. Dai, S. Kanwal, D. Lei, and D. Zhang, Photon. Res. 8, 1148 (2020).

    Article  Google Scholar 

  6. J. A. Davis, M. J. Mitry, M. A. Bandres, I. Ruiz, K. P. McAuley, and D. M. Cottrell, Appl. Opt. 48, 3170 (2009).

    Article  ADS  Google Scholar 

  7. M. A. Bandres, Opt. Lett. 33, 1678 (2008).

    Article  ADS  Google Scholar 

  8. J. A. Davis, M. J. Mintry, M. A. Bandres, and D. M. Cottrell, Opt. Express 16, 12866 (2008).

    Article  ADS  Google Scholar 

  9. I. Dolev, A. Libster, and A. Arie, Appl. Phys. Lett. 101, 101109 (2012).

    Article  ADS  Google Scholar 

  10. J. Wen, Z. Xie, S. Liu, X. Chen, T. Tang, S. Kanwal, and D. Zhang, Nanomaterials 13, 508 (2023).

    Article  Google Scholar 

  11. L. Chen, S. Kanwal, B. Yu, J. Feng, C. Tao, J. Wen, and D. Zhang, Nanophotonics 11, 967 (2022).

    Article  Google Scholar 

  12. L. Chen, S. Kanwal, Y. Lu, D. Zhang, X. Chen, J. Chen, and J. Wen, Nanophotonics 11, 1203 (2022).

    Article  Google Scholar 

  13. J. Baumgartl, G. M. Hannappel, D. J. Stevenson, D. Day, M. Gu, and K. Dholakia, Lab Chip 9, 1334 (2009).

    Article  Google Scholar 

  14. R. A. B. Suarez, A. A. R. Neves, and M. R. R. Gesualdi, Opt. Laser Tech. 135, 106678 (2021).

    Article  Google Scholar 

  15. K. Dholakia, and T. Čižmár, Nat. Photon. 5, 335 (2011).

    Article  ADS  Google Scholar 

  16. T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier, T. Čižmár, F. J. Gunn-Moore, and K. Dholakia, Nat. Methods 11, 541 (2014).

    Article  Google Scholar 

  17. S. Gu, X. Yu, C. Bai, J. Min, R. Li, Y. Yang, and B. Yao, Front. Phys. 10, 1111023 (2022).

    Article  Google Scholar 

  18. S. Jia, J. C. Vaughan, and X. Zhuang, Nat. Photon. 8, 302 (2014).

    Article  ADS  Google Scholar 

  19. L. Zhu, A. Wang, M. Deng, B. Lu, and X. Guo, Opt. Express 29, 32580 (2021).

    Article  ADS  Google Scholar 

  20. M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, Optica 3, 525 (2016).

    Article  ADS  Google Scholar 

  21. J. Li, G. Hu, L. Shi, N. He, D. Li, Q. Shang, Q. Zhang, H. Fu, L. Zhou, W. Xiong, J. Guan, J. Wang, S. He, and L. Chen, Nat. Commun. 12, 6425 (2021).

    Article  ADS  Google Scholar 

  22. H. Li, W. Hao, X. Yin, S. Chen, and L. Chen, Adv. Opt. Mater. 7, 1900493 (2019).

    Article  Google Scholar 

  23. Y. Shen, and X. Luo, Opt. Commun. 366, 174 (2016).

    Article  ADS  Google Scholar 

  24. A. Dai, P. Fang, J. Gao, Q. Min, R. Hu, S. Qiu, X. Wu, J. Guo, and G. Situ, Nano Lett. 23, 5019 (2023).

    Article  ADS  Google Scholar 

  25. M. Liu, W. Zhu, P. Huo, L. Feng, M. Song, C. Zhang, L. Chen, H. J. Lezec, Y. Lu, A. Agrawal, and T. Xu, Light Sci. Appl. 10, 107 (2021).

    Article  ADS  Google Scholar 

  26. F. Zhang, M. Pu, X. Li, P. Gao, X. Ma, J. Luo, H. Yu, and X. Luo, Adv. Funct. Mater. 27, 1704295 (2017).

    Article  Google Scholar 

  27. A. C. Overvig, S. Shrestha, S. C. Malek, M. Lu, A. Stein, C. Zheng, and N. Yu, Light Sci. Appl. 8, 92 (2019), arXiv: 1903.00578.

    Article  ADS  Google Scholar 

  28. Z. Ju, J. Wen, L. Shi, B. Yu, M. Deng, D. Zhang, W. Hao, J. Wang, S. Chen, and L. Chen, Adv. Opt. Mater. 9, 2001284 (2021).

    Article  Google Scholar 

  29. Z. Zhao, X. Ding, K. Zhang, J. Fu, and Q. Wu, IEEE Trans. Magn. 58, 1 (2022).

    Google Scholar 

  30. Y. Yuan, S. Sun, Y. Chen, K. Zhang, X. Ding, B. Ratni, Q. Wu, S. N. Burokur, and C. Qiu, Adv. Sci. 7, 1 (2020).

    Article  Google Scholar 

  31. Q. Jiang, L. Hu, G. Geng, J. Li, Y. Wang, and L. Huang, Opt. Express 30, 13530 (2022).

    Article  ADS  Google Scholar 

  32. Y. Yang, X. Zhang, K. Liu, H. Zhang, L. Shi, S. Song, D. Tang, and Y. Guo, Ann. Phys. 534, 2200188 (2022).

    Article  Google Scholar 

  33. Q. Jiang, L. Cao, L. Huang, Z. He, and G. Jin, Nanoscale 12, 24162 (2020).

    Article  Google Scholar 

  34. W. L. Guo, G. M. Wang, X. Y. Luo, K. Chen, H. P. Li, and Y. Feng, IEEE Trans. Antennas Propagat. 68, 7705 (2020).

    Article  ADS  Google Scholar 

  35. G. Y. Lee, G. Yoon, S. Y. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. Rho, and B. Lee, Nanoscale 10, 4237 (2018).

    Article  Google Scholar 

  36. E.-Y. Song, G.-Y. Lee, H. Park, K. Lee, J. Kim, J. Hong, H. Kim, and B. Lee, Adv. Opt. Mater. 5, 1601028 (2017).

    Article  Google Scholar 

  37. H. Hao, S. Zheng, Y. Tang, and X. H. Ran, Phys. Lett. A 434, 128036 (2022).

    Article  Google Scholar 

  38. Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, Sci. Rep. 6, 32867 (2016).

    Article  ADS  Google Scholar 

  39. Y. Mu, C. Pang, Y. Wang, Q. Wang, and J. Qi, Photon. Res. 11, 986 (2023).

    Article  Google Scholar 

  40. Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, Photon. Res. 7, 80 (2019).

    Article  Google Scholar 

  41. X. Yin, H. Zhu, H. Guo, M. Deng, T. Xu, Z. Gong, X. Li, Z. H. Hang, C. Wu, H. Li, S. Chen, L. Zhou, and L. Chen, Laser Photon. Rev. 13, 1800081 (2019).

    Article  ADS  Google Scholar 

  42. G. W. K. Moore, S. E. L. Howell, M. Brady, X. Xu, and K. McNeil, Nat. Commun. 12, 1 (2021).

    Article  ADS  Google Scholar 

  43. Z. Chen, T. Zeng, B. Qian, and J. Ding, Opt. Express 23, 17701 (2015).

    Article  ADS  Google Scholar 

  44. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, Appl. Opt. 38, 5004 (1999).

    Article  ADS  Google Scholar 

  45. T. Nobukawa, and T. Nomura, Appl. Opt. 55, 2565 (2016).

    Article  ADS  Google Scholar 

  46. G. Yoon, T. Tanaka, T. Zentgraf, and J. Rho, J. Phys. D-Appl. Phys. 54, 383002 (2021).

    Article  ADS  Google Scholar 

  47. G. Yoon, K. Kim, S. U. Kim, S. Han, H. Lee, and J. Rho, ACS Nano 15, 698 (2021).

    Article  Google Scholar 

  48. N. Li, Y. H. Fu, Y. Dong, T. Hu, Z. Xu, Q. Zhong, D. Li, K. H. Lai, S. Zhu, Q. Lin, Y. Gu, and N. Singh, Nanophotonics 8, 1855 (2019).

    Article  Google Scholar 

  49. G. Yoon, D. Lee, K. T. Nam, and J. Rho, ACS Photon. 5, 1643 (2018).

    Article  Google Scholar 

  50. X. Xue, B. Xu, B. Wu, J Lin, X. Wang, X. Yu, L. Lin, and H. Li, Opt. Express 30, 20389 (2022).

    Article  ADS  Google Scholar 

  51. Q. Fan, D. Wang, P. Huo, Z. Zhang, Y. Liang, and T. Xu, Opt. Express 25, 9285 (2017).

    Article  ADS  Google Scholar 

  52. J. H. Yang, V. E. Babicheva, M. W. Yu, T. C. Lu, T. R. Lin, and K. P. Chen, ACS Nano 14, 5678 (2020).

    Article  Google Scholar 

  53. M. D. Shafqat, N. Mahmood, M. Zubair, M. Q. Mehmood, and Y. Massoud, Nanomaterials 12, 3285 (2022).

    Article  Google Scholar 

  54. Y. Hu, X. Liu, M. Jin, Y. Tang, X. Zhang, K. F. Li, Y. Zhao, G. Li, and J. Zhou, PhotoniX 2, 10 (2021).

    Article  Google Scholar 

  55. M. McLamb, S. Park, V. P. Stinson, Y. Li, N. Shuchi, G. D. Boreman, and T. Hofmann, Optics 3, 70 (2022).

    Article  Google Scholar 

  56. A. Ottomaniello, P. Vezio, O. Tricinci, F. M. Den Hoed, P. Dean, A. Tredicucci, and V. Mattoli, Nanophotonics 12, 1557 (2023).

    Article  Google Scholar 

  57. Y. Li, M. McLamb, S. Park, D. Childers, G. D. Boreman, and T. Hofmann, Plasmonics 16, 2241 (2021).

    Article  Google Scholar 

  58. B. Ma, B. Yao, Z. Li, M. Lei, S. Yan, P. Gao, D. Dan, and T. Ye, Appl. Phys. B 110, 531 (2013).

    Article  ADS  Google Scholar 

  59. D. M. Cottrell, J. A. Davis, T. R. Hedman, and R. A. Lilly, Appl. Opt. 29, 2505 (1990).

    Article  ADS  Google Scholar 

  60. B. K. Gutierrez, J. A. Davis, I. Moreno, and D. M. Cottrell, Opt. Lett. 44, 3398 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wen.

Ethics declarations

Conflict of interest The author(s) declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 62175153), and the National Key R&D Program of China (Grant No. 2018YFA0701800).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplemental File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, T., Kanwal, S., Lu, Y. et al. 3D nano-printed geometric phase metasurfaces for generating accelerating beams with complex amplitude manipulation. Sci. China Phys. Mech. Astron. 67, 264211 (2024). https://doi.org/10.1007/s11433-023-2349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2349-5

Navigation