Skip to main content
Log in

A quantum federated learning framework for classical clients

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum federated learning (QFL) enables collaborative training of a quantum machine learning (QML) model among multiple clients possessing quantum computing capabilities, without the need to share their respective local data. However, the limited availability of quantum computing resources poses a challenge for each client to acquire quantum computing capabilities. This raises a natural question: Can quantum computing capabilities be deployed on the server instead? In this paper, we propose a QFL framework specifically designed for classical clients, referred to as CC-QFL, in response to this question. In each iteration, the collaborative training of the QML model is assisted by the shadow tomography technique, eliminating the need for quantum computing capabilities of clients. Specifically, the server constructs a classical representation of the QML model and transmits it to the clients. The clients encode their local data onto observables and use this classical representation to calculate local gradients. These local gradients are then utilized to update the parameters of the QML model. We evaluate the effectiveness of our framework through extensive numerical simulations using handwritten digit images from the MNIST dataset. Our framework provides valuable insights into QFL, particularly in scenarios where quantum computing resources are scarce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Simonyan, and A. Zisserman, in Very Deep Convolutional Networks for Large-Scale Image Recognition: 3rd International Conference on Learning Representations (ICLR, San Diego, 2015).

    Google Scholar 

  2. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, in Going Deeper with Convolutions: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR, Boston, 2015).

    Book  Google Scholar 

  3. A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, Comput. Intel. Neurosci. 2018, 1 (2018).

    Google Scholar 

  4. L. Sutskever, O. Vinyals, and Q, Le, in Sequence to Sequence Learning with Neural Networks: Advances in Neural Information Processing Systems (NIPS, 2014).

  5. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, Nature 529, 484 (2016).

    Article  ADS  Google Scholar 

  6. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, in Communication-Efficient Learning of Deep Networks from Decentralized Data: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS, Valencia, 2017).

    Google Scholar 

  7. A. W. Harrow, and A. Montanaro, Nature 549, 203 (2017), arXiv: 1809.07442.

    Article  ADS  Google Scholar 

  8. P. W. Shor, SIAM Rev. 41, 303 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997), arXiv: quant-ph/9706033.

    Article  ADS  Google Scholar 

  10. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Nature 549, 195 (2017), arXiv: 1611.09347.

    Article  ADS  Google Scholar 

  11. V. Dunjko, and H. J. Briegel, Rep. Prog. Phys. 81, 074001 (2018).

    Article  ADS  Google Scholar 

  12. K. Schütt, S. Chmiela, V Lilienfeld, O. Anatole, A. Tkatchenko, K. Tsuda, and K. Müller, in Machine Learning Meets Quantum Physics: Lecture Notes in Physics (LNP, 2020).

  13. A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009), arXiv: 0811.3171.

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Rebentrost, A. Steffens, I. Marvian, and S. Lloyd, Phys. Rev. A 97, 012327 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  15. R. Somma, M. A. Childs, and R. Kothari, in Quantum Linear Systems Algorithm with Exponentially Improved Dependence On Precision: APS March Meeting Abstracts (APS March Meeting, College Park, 2016).

  16. N. Wiebe, D. Braun, and S. Lloyd, Phys. Rev. Lett. 109, 050505 (2012), arXiv: 1204.5242.

    Article  ADS  Google Scholar 

  17. P. Rebentrost, M. Schuld, L. Wossnig, F. Petruccione, and S. Lloyd, New J. Phys. 21, 073023 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  18. J. M. Liang, S. J. Wei, and S. M. Fei, Sci. China-Phys. Mech. Astron. 65, 250313 (2022), arXiv: 2204.07284.

    Article  ADS  Google Scholar 

  19. P. Gao, K. Li, S. Wei, and G. L. Long, Sci. China-Phys. Mech. Astron. 64, 100311 (2021).

    Article  ADS  Google Scholar 

  20. S. Lloyd, M. Mohseni, and P. Rebentrost, Nat. Phys. 10, 631 (2014), arXiv: 1307.0401.

    Article  Google Scholar 

  21. F. Brandao, and K. Svore, in Quantum Speed-ups for Solving Semidefinite Programs: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS, Berkeley, 2017).

    Book  Google Scholar 

  22. P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev. Lett. 113, 130503 (2014), arXiv: 1307.0471.

    Article  ADS  Google Scholar 

  23. Z. Ye, L. Li, H. Situ, and Y. Wang, Sci. China Inf. Sci. 63, 189501 (2020).

    Article  Google Scholar 

  24. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, Nat. Rev. Phys. 3, 625 (2021).

    Article  Google Scholar 

  25. K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W. K. Mok, S. Sim, L. C. Kwek, and A. Aspuru-Guzik, Rev. Mod. Phys. 94, 015004 (2022), arXiv: 2101.08448.

    Article  ADS  Google Scholar 

  26. Y. Song, Y. Wu, S. Qin, Q. Wen, J. B. Wang, and F. Gao, arXiv: 2310.06270.

  27. H. L. Huang, X. Y. Xu, C. Guo, G. Tian, S. J. Wei, X. Sun, W. S. Bao, and G. L. Long, Sci. China-Phys. Mech. Astron. 66, 250302 (2023), arXiv: 2211.08737.

    Article  ADS  Google Scholar 

  28. E. Farhi, and H. Neven, arXiv: 1802.06002.

  29. Z. Abohashima, M. Elhosen, E. H. Houssein, and W. M. Mohamed, arXiv: 2006.12270.

  30. W. Li, and D. L. Deng, Sci. China-Phys. Mech. Astron. 65, 220301 (2022), arXiv: 2108.13421.

    Article  ADS  Google Scholar 

  31. D. L. Deng, Sci. China-Phys. Mech. Astron. 64, 100331 (2021).

    Article  ADS  Google Scholar 

  32. W. Ren, W. Li, S. Xu, K. Wang, W. Jiang, F. Jin, X. Zhu, J. Chen, Z. Song, P. Zhang, H. Dong, X. Zhang, J. Deng, Y. Gao, C. Zhang, Y. Wu, B. Zhang, Q. Guo, H. Li, Z. Wang, J. Biamonte, C. Song, D. L. Deng, and H. Wang, Nat. Comput. Sci. 2, 711 (2022).

    Article  Google Scholar 

  33. S. J. Wei, Y. H. Chen, Z. R. Zhou, and G. L. Long, AAPPS Bull. 32, 2 (2022).

    Article  ADS  Google Scholar 

  34. W. Li, Z. Lu, and D. L. Deng, SciPost Phys. Lect. Notes 2022, 61 (2022).

    Article  Google Scholar 

  35. Z. Liu, P. X. Shen, W. Li, L. M. Duan, and D. L. Deng, Quantum Sci. Technol. 8, 015016 (2023).

    Article  ADS  Google Scholar 

  36. X. Hou, G. Zhou, Q. Li, S. Jin, and X. Wang, Sci. China-Phys. Mech. Astron. 66, 270362 (2023), arXiv: 2211.11228.

    Article  ADS  Google Scholar 

  37. S. Y. C. Chen, S. Yoo, and Y. L. L. Fang, in Quantum Long Short-term Memory: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP, Singapore, 2022).

    Book  Google Scholar 

  38. O. Kyriienko, A. E. Paine, and V. E. Elfving, Phys. Rev. A 103, 052416 (2021), arXiv: 2011.10395.

    Article  ADS  Google Scholar 

  39. Y. Wu, B. Wu, J. Wang, and X. Yuan, Quantum 7, 981 (2023).

    Article  Google Scholar 

  40. C. Zoufal, A. Lucchi, and S. Woerner, npj Quantum Inf. 5, 103 (2019), arXiv: 1904.00043.

    Article  ADS  Google Scholar 

  41. K. Nakaji, and N. Yamamoto, Sci. Rep. 11, 19649 (2021), arXiv: 2010.13727.

    Article  ADS  Google Scholar 

  42. H. Situ, Z. He, Y. Wang, L. Li, and S. Zheng, Inf. Sci. 538, 193 (2020).

    Article  Google Scholar 

  43. S. Y. C. Chen, C. H. H. Yang, J. Qi, P. Y. Chen, X. Ma, and H. S. Goan, IEEE Access 8, 141007 (2020).

    Article  Google Scholar 

  44. O. Lockwood, and M. Si, in Reinforcement Learning With Quantum Variational Circuit: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE, Salt Lake City, 2020).

    Book  Google Scholar 

  45. Q. Xia, and Q. Li, in Quantumfed: A Federated Learning Framework for Collaborative Quantum Training: 2021 IEEE Global Communications Conference (GLOBECOM, Madrid, 2021).

    Google Scholar 

  46. M. Chehimi, and W. Saad, in Quantum Federated Learning with Quantum Data: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP, Singapore, 2022).

    Book  Google Scholar 

  47. R. Huang, X. Tan, and Q. Xu, IEEE J. Sel. Top. Quantum Electron. 28, 1 (2022).

    Article  ADS  Google Scholar 

  48. Q. Xia, Z. Tao, and Q. Li, in Defending Against Byzantine Attacks in Quantum Federated Learning: 2021 17th International Conference on Mobility, Sensing and Networking (MSN, Exeter, 2021).

    Book  Google Scholar 

  49. W. Yamany, N. Moustafa, and B. Turnbull, IEEE Trans. Intell. Transp. Syst. 24, 893 (2023).

    Article  Google Scholar 

  50. W. Li, S. Lu, and D. L. Deng, Sci. China-Phys. Mech. Astron. 64, 100312 (2021), arXiv: 2103.08403.

    Article  ADS  Google Scholar 

  51. Y. Zhang, C. Zhang, C. Zhang, L. Fan, B. Zeng, and Q. Yang, arXiv: 2207.07444.

  52. C. Li, N. Kumar, Z. Song, S. Chakrabarti, and M. Pistoia, arXiv: 2312.04447.

  53. A. S. Bhatia, S. Kais, and M. A. Alam, Quantum Sci. Technol. 8, 045032 (2023).

    Article  ADS  Google Scholar 

  54. H. Zhao, Quantum Mach. Intell. 5, 3 (2023).

    Article  Google Scholar 

  55. W. J. Yun, J. P. Kim, S. Jung, J. Park, M. Bennis, and J. Kim, arXiv: 2207.10221.

  56. Y. B. Sheng, and L. Zhou, Sci. Bull. 62, 1025 (2017).

    Article  Google Scholar 

  57. A. Broadbent, J. Fitzsimons, and E. Kashefi, in Universal Blind Quantum Computation: 2009 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS, Atlanta, 2009).

    Book  Google Scholar 

  58. H. Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050 (2020), arXiv: 2002.08953.

    Article  Google Scholar 

  59. H. Y. Huang, R. Kueng, and J. Preskill, Phys. Rev. Lett. 127, 030503 (2021), arXiv: 2103.07510.

    Article  ADS  Google Scholar 

  60. H. C. Nguyen, J. L. Bönsel, J. Steinberg, and O. Gühne, Phys. Rev. Lett. 129, 220502 (2022).

    Article  ADS  Google Scholar 

  61. C. Hadfield, S. Bravyi, R. Raymond, and A. Mezzacapo, Commun. Math. Phys. 391, 951 (2022).

    Article  ADS  Google Scholar 

  62. B. Wu, J. Sun, Q. Huang, and X. Yuan, Quantum 7, 896 (2023).

    Article  Google Scholar 

  63. Y. Wu, and J. B. Wang, Quantum Sci. Technol. 7, 025006 (2022), arXiv: 2109.10486.

    Article  ADS  Google Scholar 

  64. D. P. Kingma, and J. Ba, arXiv: 1412.6980.

  65. K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Phys. Rev. A 98, 032309 (2018), arXiv: 1803.00745.

    Article  ADS  Google Scholar 

  66. M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, Phys. Rev. A 99, 032331 (2019), arXiv: 1811.11184.

    Article  ADS  Google Scholar 

  67. D. Gottesman, Stabilizer Codes and Quantum Error Correction (California Institute of Technology, Pasadena, 1997).

    Google Scholar 

  68. M. Broughton, G. Verdon, T. McCourt, A. J. Martinez, J. H. Yoo, S. V. Isakov, P. Massey, R. Halavati, M. Y. Niu, and A. Zlokapa, arXiv: 2003.02989.

  69. A. Maćkiewicz, and W. Ratajczak, Comput. Geosci. 19, 303 (1993).

    Article  ADS  Google Scholar 

  70. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Nature 549, 242 (2017), arXiv: 1704.05018.

    Article  ADS  Google Scholar 

  71. S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith, and A. Talwalkar, arXiv: 1812.01097.

  72. L. Zhu, Z. Liu, and S. Han, in Deep Leakage from Gradients: Advances in Neural Information Processing Systems 32 (NeurIPS, Vancouver, 2019).

    Google Scholar 

  73. J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, in Inverting Gradients-how Easy is it to Break Privacy in Federated Learning? Advances in Neural Information Processing Systems 33 (NeurIPS, Vancouver, 2020).

    Google Scholar 

  74. C. Gentry, in Fully Homomorphic Encryption Using Ideal Lattices: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing (STOC, Bethesda, 2009).

    Book  Google Scholar 

  75. C. Dwork, in Differential Privacy: A survey of results: International Conference on Theory and Applications of Models of Computation (TAMC, Xi’an, 2008).

    Google Scholar 

  76. C. Dwork, in Differential Privacy: International Colloquium on Automata, Languages, and Programming (ICALP, Rennes, 2006).

    Google Scholar 

  77. M. R. Jerrum, L. G. Valiant, and V. V. Vazirani, Theor. Comput. Sci. 43, 169 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sujuan Qin or Fei Gao.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62371069, 62272056, and 62372048), Beijing Natural Science Foundation (Grant No. 4222031), and China Scholarship Council (Grant No. 202006470011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Wu, Y., Wu, S. et al. A quantum federated learning framework for classical clients. Sci. China Phys. Mech. Astron. 67, 250311 (2024). https://doi.org/10.1007/s11433-023-2337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2337-2

Navigation