Skip to main content
Log in

Chirality enables thermal magnon transistors

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We report a theory of thermal spin pumping into proximity magnets under a transverse-bias-driven heat flow of magnons in magnetic films when the dipolar coupling to the magnetic gate is tuned to be “chiral”. While there is no rectification of the magnon current in the film, we predict that chirality diverts a large percentage (50% for perfect chirality) of it into the gate. This transverse thermal spin pumping effect can be controlled by rotating the film magnetization and may help manage the heat flow in future magnonic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Roberts, and D. G. Walker, Int. J. Therm. Sci. 50, 648 (2011).

    Article  Google Scholar 

  2. D. Segal, Phys. Rev. Lett. 100, 105901 (2008), arXiv: 0802.0844.

    Article  ADS  PubMed  Google Scholar 

  3. A. Ott, R. Messina, P. Ben-Abdallah, and S. A. Biehs, Appl. Phys. Lett. 114, 163105 (2019), arXiv: 1903.10751.

    Article  ADS  Google Scholar 

  4. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, Nature 541, 473 (2017), arXiv: 1608.00446.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. T. Yu, Z. Luo, and G. E. W. Bauer, Phys. Rep. 1009, 1 (2023), arXiv: 2206.05535.

    Article  ADS  MathSciNet  Google Scholar 

  6. S. H. Yang, R. Naaman, Y. Paltiel, and S. S. P. Parkin, Nat. Rev. Phys. 3, 328 (2021).

    Article  Google Scholar 

  7. R. W. Damon, and J. R. Eshbach, J. Phys. Chem. Solids 19, 308 (1961).

    Article  ADS  Google Scholar 

  8. T. An, V. I. Vasyuchka, K. Uchida, A. V. Chumak, K. Yamaguchi, K. Harii, J. Ohe, M. B. Jungfleisch, Y. Kajiwara, H. Adachi, B. Hille-brands, S. Maekawa, and E. Saitoh, Nat. Mater. 12, 549 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. E. Shigematsu, Y. Ando, S. Dushenko, T. Shinjo, and M. Shiraishi, Appl. Phys. Lett. 112, 212401 (2018), arXiv: 1810.06875.

    Article  ADS  Google Scholar 

  10. P. Wang, L. F. Zhou, S. W. Jiang, Z. Z. Luan, D. J. Shu, H. F. Ding, and D. Wu, Phys. Rev. Lett. 120, 047201 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. R. Schlitz, S. Vélez, A. Kamra, C. H. Lambert, M. Lammel, S. T. B. Goennenwein, and P. Gambardella, Phys. Rev. Lett. 126, 257201 (2021), arXiv: 2106.12946.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. S. de-la-Peña, R. Schlitz, S. Vélez, J. C. Cuevas, and A. Kamra, J. Phys.-Condens. Matter 34, 295801 (2022), arXiv: 2112.10819.

    Article  Google Scholar 

  13. J. Han, Y. Fan, B. C. McGoldrick, J. Finley, J. T. Hou, P. Zhang, and L. Liu, Nano Lett. 21, 7037 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. J. Gückelhorn, S. de-la-Peña, M. Scheufele, M. Grammer, M. Opel, S. Geprägs, J. C. Cuevas, R. Gross, H. Huebl, A. Kamra, and M. Althammer, Phys. Rev. Lett. 130, 216703 (2023), arXiv: 2209.09040.

    Article  ADS  PubMed  Google Scholar 

  15. L. J. Cornelissen, J. Liu, B. J. van Wees, and R. A. Duine, Phys. Rev. Lett. 120, 097702 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. T. Wimmer, M. Althammer, L. Liensberger, N. Vlietstra, S. Geprägs, M. Weiler, R. Gross, and H. Huebl, Phys. Rev. Lett. 123, 257201 (2019), arXiv: 1812.01334.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. J. Liu, X. Y. Wei, G. E. W. Bauer, J. B. Youssef, and B. J. van Wees, Phys. Rev. B 103, 214425 (2021), arXiv: 2011.07800.

    Article  ADS  CAS  Google Scholar 

  18. K. Baumgaertl, and D. Grundler, Nat. Commun. 14, 1490 (2023), arXiv: 2208.10923.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Y. Au, E. Ahmad, O. Dmytriiev, M. Dvornik, T. Davison, and V. V. Kruglyak, Appl. Phys. Lett. 100, 182404 (2012).

    Article  ADS  Google Scholar 

  20. T. Yu, C. Liu, H. Yu, Y. M. Blanter, and G. E. W. Bauer, Phys. Rev. B 99, 134424 (2019), arXiv: 1901.09182.

    Article  ADS  CAS  Google Scholar 

  21. J. Chen, T. Yu, C. Liu, T. Liu, M. Madami, K. Shen, J. Zhang, S. Tu, M. S. Alam, K. Xia, M. Wu, G. Gubbiotti, Y. M. Blanter, G. E. W. Bauer, and H. Yu, Phys. Rev. B 100, 104427 (2019), arXiv: 1903.00638.

    Article  ADS  CAS  Google Scholar 

  22. L. Sheng, M. Elyasi, J. Chen, W. He, Y. Wang, H. Wang, H. Feng, Y. Zhang, I. Medlej, S. Liu, W. Jiang, X. Han, D. Yu, J. P. Ansermet, G. E. W. Bauer, and H. Yu, Phys. Rev. Lett. 130, 046701 (2023), arXiv: 2209.01875.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. T. Yu, Y. M. Blanter, and G. E. W. Bauer, Phys. Rev. Lett. 123, 247202 (2019), arXiv: 1908.09141.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. X. Huang, X. Chen, Y. Li, J. Mangeri, H. Zhang, M. Ramesh, H. Taghinejad, P. Meisenheimer, L. Caretta, S. Susarla, R. Jain, C. Klewe, T. Wang, R. Chen, C. H. Hsu, H. Pan, J. Yin, P. Shafer, Z. Qiu, D. R. Rodrigues, O. Heinonen, D. Vasudevan, J. Iniguez, D. G. Schlom, S. Salahuddin, L. W. Martin, J. G. Analytis, D. C. Ralph, R. Cheng, Z. Yao, and R. Ramesh, arXiv: 2306.02185.

  25. A. G. Gurevich, Radiotekh. Elektron. (Moscow) 8, 780 (1963).

    Google Scholar 

  26. T. Yu, X. Zhang, S. Sharma, Y. M. Blanter, and G. E. W. Bauer, Phys. Rev. B 101, 094414 (2020), arXiv: 1909.01817.

    Article  ADS  CAS  Google Scholar 

  27. L. Zhong, C. Zhang, and B. M. Yao, AIP Adv. 12, 085323 (2022).

    Article  ADS  CAS  Google Scholar 

  28. H. Zhan, L. Sun, and H. Tan, Phys. Rev. B 106, 104432 (2022), arXiv: 2210.00710.

    Article  ADS  CAS  Google Scholar 

  29. M. Xu, K. Yamamoto, J. Puebla, K. Baumgaertl, B. Rana, K. Miura, H. Takahashi, D. Grundler, S. Maekawa, and Y. Otani, Sci. Adv. 6, eabb1724 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. T. Yu, Phys. Rev. B 102, 134417 (2020), arXiv: 2007.12240.

    Article  ADS  CAS  Google Scholar 

  31. M. Küß, M. Heigl, L. Flacke, A. Hörner, M. Weiler, M. Albrecht, and A. Wixforth, Phys. Rev. Lett. 125, 217203 (2020), arXiv: 2004.03535.

    Article  ADS  PubMed  Google Scholar 

  32. P. J. Shah, D. A. Bas, I. Lisenkov, A. Matyushov, N. X. Sun, and M. R. Page, Sci. Adv. 6, eabc5648 (2020), arXiv: 2004.14190.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. H. Nyquist, Phys. Rev. 32, 110 (1928).

    Article  ADS  CAS  Google Scholar 

  34. J. Chen, C. Liu, T. Liu, Y. Xiao, K. Xia, G. E. W. Bauer, M. Wu, and H. Yu, Phys. Rev. Lett. 120, 217202 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. M. Ishibashi, Y. Shiota, T. Li, S. Funada, T. Moriyama, and T. Ono, Sci. Adv. 6, eaaz6931 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Y. Shiota, T. Taniguchi, M. Ishibashi, T. Moriyama, and T. Ono, Phys. Rev. Lett. 125, 017203 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. R. A. Gallardo, T. Schneider, A. K. Chaurasiya, A. Oelschlägel, S. S. P. K. Arekapudi, A. Roldán-Molina, R. Hübner, K. Lenz, A. Barman, J. Fassbender, J. Lindner, O. Hellwig, and P. Landeros, Phys. Rev. Appl. 12, 034012 (2019).

    Article  ADS  CAS  Google Scholar 

  38. M. Grassi, M. Geilen, D. Louis, M. Mohseni, T. Brächer, M. Hehn, D. Stoeffler, M. Bailleul, P. Pirro, and Y. Henry, Phys. Rev. Appl. 14, 024047 (2020), arXiv: 1912.09735.

    Article  ADS  CAS  Google Scholar 

  39. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, New York, 1995).

    Book  Google Scholar 

  40. Y. Imry, and R. Landauer, Rev. Mod. Phys. 71, S306 (1999).

    Article  CAS  Google Scholar 

  41. H. Wang, J. Chen, T. Yu, C. Liu, C. Guo, S. Liu, K. Shen, H. Jia, T. Liu, J. Zhang, M. A. Cabero, Q. Song, S. Tu, M. Wu, X. Han, K. Xia, D. Yu, G. E. W. Bauer, and H. Yu, Nano Res. 14, 2133 (2021), arXiv: 2005.10452.

    Article  ADS  CAS  Google Scholar 

  42. X. Y. Wei, O. A. Santos, C. H. S. Lusero, G. E. W. Bauer, J. Ben Youssef, and B. J. van Wees, Nat. Mater. 21, 1352 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62, 7389 (2000).

    Article  ADS  CAS  Google Scholar 

  44. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, Phys. Rev. B 59, 15882 (1999).

    Article  ADS  CAS  Google Scholar 

  45. G. D. Mahan, Many Particle Physics (Plenum, New York, 1990).

    Book  Google Scholar 

  46. A. L. Fetter, and J. D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971).

    Google Scholar 

  47. S. Demokritov, Phys. Rep. 348, 441 (2001).

    Article  ADS  CAS  Google Scholar 

  48. T. van der Sar, F. Casola, R. Walsworth, and A. Yacoby, Nat. Commun. 6, 7886 (2015), arXiv: 1410.6423.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. I. Bertelli, B. G. Simon, T. Yu, J. Aarts, G. E. W. Bauer, Y. M. Blanter, and T. van der Sar, Adv. Quantum Tech. 4, 2100094 (2021).

    Article  Google Scholar 

  50. H. Haug, and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 1996).

    Google Scholar 

  51. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Prentice Hall, Englewood Cliffs, 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Yu or Gerrit E. W. Bauer.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2023YFA1406600), the National Natural Science Foundation of China (Grant No. 12374109), the startup grant of Huazhong University of Science and Technology, as well as JSPS KAKENHI (Grant Nos. 19H00645, and 22H04965). We thank Prof. Jing-Tao Lü for valuable discussions.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplemental Material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Cai, C. & Bauer, G.E.W. Chirality enables thermal magnon transistors. Sci. China Phys. Mech. Astron. 67, 247511 (2024). https://doi.org/10.1007/s11433-023-2294-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2294-1

Navigation