Skip to main content
Log in

Chiral phonon activated spin Seebeck effect in chiral materials

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Efficient generation of spin polarization is very important for spintronics and quantum computation. In chiral materials without magnetic order nor spin-orbit coupling, we find a new spin selectivity effect—chiral phonon activated spin Seebeck (CPASS) effect. Starting with the nonequilibrium distribution of chiral phonons under a temperature gradient, the CPASS coefficients are computed based on the Boltzmann transport theory. With both the phonon-drag and band transport contributions, the spin accumulations generated by the CPASS effect exhibit quadratic dependence on the temperature gradient. The strength of the CPASS effect and the relative magnitude of both contributions are tunable by the chemical potential modulation. The CPASS effect, which gives a promising explanation on the traditional chiral-induced spin selectivity effect, provides opportunities for the exploration of advanced spintronic devices based on chiral materials even in the absence of any magnetic order and spin-orbit coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Zhang, and Q. Niu, Phys. Rev. Lett. 112, 085503 (2014).

    Article  ADS  Google Scholar 

  2. L. Zhang, and Q. Niu, Phys. Rev. Lett. 115, 115502 (2015).

    Article  ADS  PubMed  Google Scholar 

  3. D. M. Juraschek, and N. A. Spaldin, Phys. Rev. Mater. 3, 064405 (2019).

    Article  CAS  Google Scholar 

  4. T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, Nat. Phys. 13, 132 (2017).

    Article  CAS  Google Scholar 

  5. H. Zhu, J. Yi, M. Y. Li, J. Xiao, L. Zhang, C. W. Yang, R. A. Kaindl, L. J. Li, Y. Wang, and X. Zhang, Science 359, 579 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  6. M. Hamada, E. Minamitani, M. Hirayama, and S. Murakami, Phys. Rev. Lett. 121, 175301 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. B. Cheng, T. Schumann, Y. Wang, X. Zhang, D. Barbalas, S. Stemmer, and N. P. Armitage, Nano Lett. 20, 5991 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. J. Luo, T. Lin, J. Zhang, X. Chen, E. R. Blackert, R. Xu, B. I. Yakobson, and H. Zhu, arXiv: 2306.03852.

  9. Y. Ren, C. Xiao, D. Saparov, and Q. Niu, Phys. Rev. Lett. 127, 186403 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. D. Awschalom, D. Loss, and N. Samarth, Semiconductor Spintronics and Quantum Computation (Springer, New York, 2002).

    Book  Google Scholar 

  11. G. L. J. A. Rikken, Science 331, 864 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. S. Mayer, and J. Kessler, Phys. Rev. Lett. 74, 4803 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. B. Göhler, V. Hamelbeck, T. Z. Markus, M. Kettner, G. F. Hanne, Z. Vager, R. Naaman, and H. Zacharias, Science 331, 894 (2011).

    Article  ADS  PubMed  Google Scholar 

  14. R. Naaman, and D. H. Waldeck, Annu. Rev. Phys. Chem. 66, 263 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. K. Michaeli, V. Varade, R. Naaman, and D. H. Waldeck, J. Phys.-Condens. Matter 29, 103002 (2017).

    Article  ADS  PubMed  Google Scholar 

  16. D. Rai, and M. Galperin, J. Phys. Chem. C 117, 13730 (2013).

    Article  CAS  Google Scholar 

  17. A. A. Eremko, and V. M. Loktev, Phys. Rev. B 88, 165409 (2013).

    Article  ADS  Google Scholar 

  18. R. Gutierrez, E. Díaz, R. Naaman, and G. Cuniberti, Phys. Rev. B 85, 081404 (2012).

    Article  ADS  Google Scholar 

  19. K. Michaeli, and R. Naaman, J. Phys. Chem. C 123, 17043 (2019).

    Article  CAS  Google Scholar 

  20. M. Matsuo, J. Ieda, K. Harii, E. Saitoh, and S. Maekawa, Phys. Rev. B 87, 180402 (2013).

    Article  ADS  Google Scholar 

  21. M. Hamada, T. Yokoyama, and S. Murakami, Phys. Rev. B 92, 060409 (2015).

    Article  ADS  Google Scholar 

  22. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. H. Adachi, K. Uchida, E. Saitoh, and S. Maekawa, Rep. Prog. Phys. 76, 036501 (2013).

    Article  ADS  PubMed  Google Scholar 

  24. H. Chen, W. Wu, J. Zhu, W. Gong, W. Gao, S. Yang, and L. Zhang, arXiv: 2109.08872.

  25. M. Hamada, and S. Murakami, Phys. Rev. B 101, 144306 (2020).

    Article  ADS  CAS  Google Scholar 

  26. G. D. Mahan, L. Lindsay, and D. A. Broido, J. Appl. Phys. 116, 245102 (2014).

    Article  ADS  Google Scholar 

  27. K. Kim, E. Vetter, L. Yan, C. Yang, Z. Wang, R. Sun, Y. Yang, A. H. Comstock, X. Li, J. Zhou, L. Zhang, W. You, D. Sun, and J. Liu, Nat. Mater. 22, 322 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifa Zhang or Jun Zhou.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12374044, 11904173, 11890703, and 12275133). Xiao Li was also supported by the Jiangsu Specially-Appointed Professor Program. Jun Zhou is supported by the National Key R&D Project from Ministry of Science and Technology of China (Grant No. 2022YFA1203100), and the “Shuangchuang” Doctor Program of Jiangsu Province (Grant No. JSS-CBS20210341).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhong, J., Cheng, J. et al. Chiral phonon activated spin Seebeck effect in chiral materials. Sci. China Phys. Mech. Astron. 67, 237511 (2024). https://doi.org/10.1007/s11433-023-2281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2281-x

Navigation