Skip to main content
Log in

Heralded entanglement between error-protected logical qubits for fault-tolerant distributed quantum computing

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quantum error correction is essential for achieving reliable quantum information processing tasks, as it can mitigate the detrimental effects of noise by encoding single-qubit information into a larger quantum system. However, the generation of distributed entanglement between logical qubits located within two spatially separated nodes presents a significant resource-intensive challenge that has yet to be overcome. Here we present a heralded protocol for generating distributed entanglement between two nonlocal error-protected logical qubits. A high-dimensional single photon can evolve physical qubits into a logical qubit that entangles with the photon and then converts logical qubit-photon entanglement into entanglement between two logical qubits, when the photon state is properly tuned and an effective photon-spin interface between single photons and individual spins is exploited. Furthermore, the success of the entanglement generation is heralded by the detection of the photon, and the corresponding efficiency can, in principle, approach unity. These distinguished features make our protocol highly appealing for future large-scale quantum technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Nature 464, 45 (2010), arXiv: 1009.2267.

    Article  ADS  Google Scholar 

  2. G. L. Long, Commun. Theor. Phys. 45, 825 (2006), arXiv: quant-ph/0512120.

    Article  ADS  Google Scholar 

  3. S. Slussarenko, and G. J. Pryde, Appl. Phys. Rev. 6, 041303 (2019), arXiv: 1907.06331.

    Article  ADS  Google Scholar 

  4. H. L. Huang, X. Y. Xu, C. Guo, G. Tian, S. J. Wei, X. Sun, W. S. Bao, and G. L. Long, Sci. China-Phys. Mech. Astron. 66, 250302 (2023), arXiv: 2211.08737.

    Article  ADS  Google Scholar 

  5. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, Nature 574, 505 (2019), arXiv: 1910.11333.

    Article  ADS  Google Scholar 

  6. H. S. Zhong, Y. H. Deng, J. Qin, H. Wang, M. C. Chen, L. C. Peng, Y. H. Luo, D. Wu, S. Q. Gong, H. Su, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, J. J. Renema, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 127, 180502 (2021), arXiv: 2106.15534.

    Article  ADS  Google Scholar 

  7. Y. Wu, W. S. Bao, S. Cao, F. Chen, M. C. Chen, X. Chen, T. H. Chung, H. Deng, Y. Du, D. Fan, M. Gong, C. Guo, C. Guo, S. Guo, L. Han, L. Hong, H. L. Huang, Y. H. Huo, L. Li, N. Li, S. Li, Y. Li, F. Liang, C. Lin, J. Lin, H. Qian, D. Qiao, H. Rong, H. Su, L. Sun, L. Wang, S. Wang, D. Wu, Y. Xu, K. Yan, W. Yang, Y. Yang, Y. Ye, J. Yin, C. Ying, J. Yu, C. Zha, C. Zhang, H. Zhang, K. Zhang, Y. Zhang, H. Zhao, Y. Zhao, L. Zhou, Q. Zhu, C. Y. Lu, C. Z. Peng, X. Zhu, and J. W. Pan, Phys. Rev. Lett. 127, 180501 (2021), arXiv: 2106.14734.

    Article  ADS  Google Scholar 

  8. K. Sun, Z. Y. Hao, Y. Wang, J. K. Li, X. Y. Xu, J. S. Xu, Y. J. Han, C. F. Li, and G. C. Guo, Light Sci. Appl. 11, 203 (2022).

    Article  ADS  Google Scholar 

  9. S. Gicev, L. C. L. Hollenberg, and M. Usman, Quantum 7, 1058 (2023), arXiv: 2110.05854.

    Article  Google Scholar 

  10. A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Phys. Rev. A 86, 032324 (2012), arXiv: 1208.0928.

    Article  ADS  Google Scholar 

  11. G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Phys. Rev. Lett. 109, 170501 (2012), arXiv: 1210.6782.

    Article  ADS  Google Scholar 

  12. G. Feng, G. Xu, and G. Long, Phys. Rev. Lett. 110, 190501 (2013), arXiv: 1302.0384.

    Article  ADS  Google Scholar 

  13. S. J. Devitt, W. J. Munro, and K. Nemoto, Rep. Prog. Phys. 76, 076001 (2013), arXiv: 0905.2794.

    Article  ADS  Google Scholar 

  14. Y. Zhao, Y. Ye, H. L. Huang, Y. Zhang, D. Wu, H. Guan, Q. Zhu, Z. Wei, T. He, S. Cao, F. Chen, T. H. Chung, H. Deng, D. Fan, M. Gong, C. Guo, S. Guo, L. Han, N. Li, S. Li, Y. Li, F. Liang, J. Lin, H. Qian, H. Rong, H. Su, L. Sun, S. Wang, Y. Wu, Y. Xu, C. Ying, J. Yu, C. Zha, K. Zhang, Y. H. Huo, C. Y. Lu, C. Z. Peng, X. Zhu, and J. W. Pan, Phys. Rev. Lett. 129, 030501 (2022), arXiv: 2112.13505.

    Article  ADS  Google Scholar 

  15. Y. Ma, Y. Xu, X. Mu, W. Cai, L. Hu, W. Wang, X. Pan, H. Wang, Y. P. Song, C. L. Zou, and L. Sun, Nat. Phys. 16, 827 (2020), arXiv: 1909.06803.

    Article  Google Scholar 

  16. J. Zhang, S. J. Devitt, J. Q. You, and F. Nori, Phys. Rev. A 97, 022335 (2018), arXiv: 1708.02360.

    Article  ADS  Google Scholar 

  17. E. T. Campbell, B. M. Terhal, and C. Vuillot, Nature 549, 172 (2017), arXiv: 1612.07330.

    Article  ADS  Google Scholar 

  18. C. Chen, P. Guan, Y. Huang, and F. Zhang, Quantum Inf. Process. 22, 274 (2023).

    Article  ADS  Google Scholar 

  19. A. Novikov, and R. Zainulin, Quantum Inf. Process. 22, 269 (2023).

    Article  Google Scholar 

  20. M. Ruf, N. H. Wan, H. Choi, D. Englund, and R. Hanson, J. Appl. Phys. 130, 070901 (2021), arXiv: 2105.04341.

    Article  ADS  Google Scholar 

  21. S. Wehner, D. Elkouss, and R. Hanson, Science 362, eaam9288 (2018).

    Article  ADS  Google Scholar 

  22. S. H. Wei, B. Jing, X. Y. Zhang, J. Y. Liao, C. Z. Yuan, B. Y. Fan, C. Lyu, D. L. Zhou, Y. Wang, G. W. Deng, H. Z. Song, D. Oblak, G. C. Guo, and Q. Zhou, Laser Photon. Rev. 16, 2100219 (2022), arXiv: 2201.04802.

    Article  ADS  Google Scholar 

  23. I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153 (2014), arXiv: 1308.6253.

    Article  ADS  Google Scholar 

  24. F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003), arXiv: quant-ph/0308173.

    Article  ADS  Google Scholar 

  25. N. Bao, J. Lu, R. Cai, and Y. Lan, AAPPS Bull. 32, 28 (2022).

    Article  ADS  Google Scholar 

  26. T. Li, and G. L. Long, New J. Phys. 22, 063017 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Wu, G. L. Long, and M. Hayashi, Phys. Rev. Appl. 17, 064011 (2022), arXiv: 2112.15113.

    Article  ADS  Google Scholar 

  28. Y. B. Sheng, L. Zhou, and G. L. Long, Sci. Bull. 67, 367 (2022).

    Article  Google Scholar 

  29. D. Zhang, Y. Chen, S. Gong, W. Wu, W. Cai, M. Ren, X. Ren, S. Zhang, G. Guo, and J. Xu, Light Sci. Appl. 11, 58 (2022).

    Article  ADS  Google Scholar 

  30. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Nature 466, 730 (2010).

    Article  ADS  Google Scholar 

  31. C. Wang, Y. Zhang, and G. S. Jin, Phys. Rev. A 84, 032307 (2011).

    Article  ADS  Google Scholar 

  32. X. Y. Luo, Y. Yu, J. L. Liu, M. Y. Zheng, C. Y. Wang, B. Wang, J. Li, X. Jiang, X. P. Xie, Q. Zhang, X. H. Bao, and J. W. Pan, Phys. Rev. Lett. 129, 050503 (2022).

    Article  ADS  Google Scholar 

  33. M. Pompili, S. L. N. Hermans, S. Baier, H. K. C. Beukers, P. C. Humphreys, R. N. Schouten, R. F. L. Vermeulen, M. J. Tiggelman, L. dos Santos Martins, B. Dirkse, S. Wehner, and R. Hanson, Science 372, 259 (2021), arXiv: 2102.04471.

    Article  ADS  Google Scholar 

  34. P. J. Stas, Y. Q. Huan, B. Machielse, E. N. Knall, A. Suleymanzade, B. Pingault, M. Sutula, S. W. Ding, C. M. Knaut, D. R. Assumpcao, Y. C. Wei, M. K. Bhaskar, R. Riedinger, D. D. Sukachev, H. Park, M. Lončar, D. S. Levonian, and M. D. Lukin, Science 378, 557 (2022), arXiv: 2207.13128.

    Article  ADS  Google Scholar 

  35. H. Zhou, T. Li, and K. Xia, Phys. Rev. A 107, 022428 (2023).

    Article  ADS  Google Scholar 

  36. W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, Nat. Photon. 6, 777 (2012).

    Article  ADS  Google Scholar 

  37. Z. Xie, Y. Liu, X. Mo, T. Li, and Z. Li, Phys. Rev. A 104, 062409 (2021).

    Article  ADS  Google Scholar 

  38. N. Lo Piparo, W. J. Munro, and K. Nemoto, Phys. Rev. A 99, 022337 (2019), arXiv: 1807.02940.

    Article  ADS  Google Scholar 

  39. D. L. Hurst, K. B. Joanesarson, J. Iles-Smith, J. Mørk, and P. Kok, Phys. Rev. Lett. 123, 023603 (2019), arXiv: 1901.03631.

    Article  ADS  Google Scholar 

  40. E. Callus, and P. Kok, Phys. Rev. A 104, 052407 (2021), arXiv: 2102.12341.

    Article  ADS  Google Scholar 

  41. W. Qin, A. Miranowicz, H. Jing, and F. Nori, Phys. Rev. Lett. 127, 093602 (2021), arXiv: 2101.03662.

    Article  ADS  Google Scholar 

  42. Y. F. Qiao, J. Q. Chen, X. L. Dong, B. L. Wang, X. L. Hei, C. P. Shen, Y. Zhou, and P. B. Li, Phys. Rev. A 105, 032415 (2022).

    Article  ADS  Google Scholar 

  43. I. Buluta, S. Ashhab, and F. Nori, Rep. Prog. Phys. 74, 104401 (2011), arXiv: 1002.1871.

    Article  ADS  Google Scholar 

  44. Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013), arXiv: 1204.2137.

    Article  ADS  Google Scholar 

  45. P. S. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 66, 250301 (2023), arXiv: 2304.12679.

    Article  ADS  Google Scholar 

  46. B. Lu, L. Liu, J. Y. Song, K. Wen, and C. Wang, AAPPS Bull. 33, 7 (2023).

    Article  ADS  Google Scholar 

  47. A. Erhard, H. Poulsen Nautrup, M. Meth, L. Postler, R. Stricker, M. Stadler, V. Negnevitsky, M. Ringbauer, P. Schindler, H. J. Briegel, R. Blatt, N. Friis, and T. Monz, Nature 589, 220 (2021), arXiv: 2006.03071.

    Article  ADS  Google Scholar 

  48. L. Postler, S. Heuen, I. Pogorelov, M. Rispler, T. Feldker, M. Meth, C. D. Marciniak, R. Stricker, M. Ringbauer, R. Blatt, P. Schindler, M. Müller, and T. Monz, Nature 605, 675 (2022), arXiv: 2111.12654.

    Article  ADS  Google Scholar 

  49. L. Zhou, and Y. B. Sheng, Phys. Rev. A 92, 042314 (2015).

    Article  ADS  Google Scholar 

  50. S. S. Chen, L. Zhou, and Y. B. Sheng, Laser Phys. Lett. 14, 025203 (2016).

    Article  ADS  Google Scholar 

  51. M. Khazali, arXiv: 2204.08522.

  52. M. Zukowski, A. Zeilinger, and H. Weinfurter, Ann. N. Y. Acad. Sci. 755, 91 (1995).

    Article  ADS  Google Scholar 

  53. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev. Mod. Phys. 83, 33 (2011).

    Article  ADS  Google Scholar 

  54. T. Li, A. Miranowicz, K. Xia, and F. Nori, Phys. Rev. A 100, 052302 (2019), arXiv: 1811.02711.

    Article  ADS  Google Scholar 

  55. Z. Ni, S. Li, X. Deng, Y. Cai, L. Zhang, W. Wang, Z. B. Yang, H. Yu, F. Yan, S. Liu, C. L. Zou, L. Sun, S. B. Zheng, Y. Xu, and D. Yu, Nature 616, 56 (2023), arXiv: 2211.09319.

    Article  ADS  Google Scholar 

  56. V. V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios, S. Ganjam, A. Miano, B. L. Brock, A. Z. Ding, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and M. H. Devoret, Nature 616, 50 (2023).

    Article  ADS  Google Scholar 

  57. F. G. Deng, B. C. Ren, and X. H. Li, Sci. Bull. 62, 46 (2017), arXiv: 1610.09896.

    Article  Google Scholar 

  58. M. Erhard, M. Krenn, and A. Zeilinger, Nat. Rev. Phys. 2, 365 (2020), arXiv: 1911.10006.

    Article  Google Scholar 

  59. I. Vagniluca, B. Da Lio, D. Rusca, D. Cozzolino, Y. Ding, H. Zbinden, A. Zavatta, L. K. Oxenløwe, and D. Bacco, Phys. Rev. Appl. 14, 014051 (2020), arXiv: 2004.03498.

    Article  ADS  Google Scholar 

  60. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Phys. Rev. A 71, 044305 (2005).

    Article  ADS  Google Scholar 

  61. P. Lodahl, S. Mahmoodian, and S. Stobbe, Rev. Mod. Phys. 87, 347 (2015), arXiv: 1312.1079.

    Article  ADS  Google Scholar 

  62. R. Uppu, L. Midolo, X. Zhou, J. Carolan, and P. Lodahl, Nat. Nanotechnol. 16, 1308 (2021).

    Article  ADS  Google Scholar 

  63. A. Reiserer, and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015), arXiv: 1412.2889.

    Article  ADS  Google Scholar 

  64. X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, Phys. Rep. 718–719, 1 (2017), arXiv: 1707.02046.

    Article  ADS  Google Scholar 

  65. W. Qin, A. Miranowicz, P. B. Li, X. Y. Lu, J. Q. You, and F. Nori, Phys. Rev. Lett. 120, 093601 (2018), arXiv: 1709.09555.

    Article  ADS  Google Scholar 

  66. P. B. Li, Z. L. Xiang, P. Rabl, and F. Nori, Phys. Rev. Lett. 117, 015502 (2016), arXiv: 1606.02998.

    Article  ADS  Google Scholar 

  67. P. B. Li, Y. Zhou, W. B. Gao, and F. Nori, Phys. Rev. Lett. 125, 153602 (2020), arXiv: 2003.07151.

    Article  ADS  Google Scholar 

  68. T. Stolz, H. Hegels, M. Winter, B. Röhr, Y. F. Hsiao, L. Husel, G. Rempe, and S. Dürr, Phys. Rev. X 12, 021035 (2022).

    Google Scholar 

  69. A. Gritsch, A. Ulanowski, and A. Reiserer, Optica 10, 783 (2023), arXiv: 2301.07753.

    Article  ADS  Google Scholar 

  70. J. Borregaard, A. S. Sørensen, and P. Lodahl, Adv. Quantum Tech. 2, 1800091 (2019).

    Article  Google Scholar 

  71. K. C. Chen, E. Bersin, and D. Englund, npj Quantum Inf. 7, 2 (2021), arXiv: 2004.02381.

    Article  ADS  Google Scholar 

  72. S. Daiss, S. Langenfeld, S. Welte, E. Distante, P. Thomas, L. Hartung, O. Morin, and G. Rempe, Science 371, 614 (2021), arXiv: 2103.13095.

    Article  ADS  Google Scholar 

  73. M. Radulaski, J. L. Zhang, Y. Tzeng, K. G. Lagoudakis, H. Ishiwata, C. Dory, K. A. Fischer, Y. A. Kelaita, S. Sun, P. C. Maurer, K. Alassaad, G. Ferro, Z. Shen, N. A. Melosh, S. Chu, and J. Vučković, Laser Photon. Rev. 13, 1800316 (2019).

    Article  ADS  Google Scholar 

  74. C. T. Nguyen, D. D. Sukachev, M. K. Bhaskar, B. Machielse, D. S. Levonian, E. N. Knall, P. Stroganov, R. Riedinger, H. Park, M. Lončar, and M. D. Lukin, Phys. Rev. Lett. 123, 183602 (2019), arXiv: 1907.13199.

    Article  ADS  Google Scholar 

  75. C. T. Nguyen, D. D. Sukachev, M. K. Bhaskar, B. Machielse, D. S. Levonian, E. N. Knall, P. Stroganov, C. Chia, M. J. Burek, R. Riedinger, H. Park, M. Lončar, and M. D. Lukin, Phys. Rev. B 100, 165428 (2019), arXiv: 1907.13200.

    Article  ADS  Google Scholar 

  76. J. Borregaard, H. Pichler, T. Schröder, M. D. Lukin, P. Lodahl, and A. S. Sørensen, Phys. Rev. X 10, 021071 (2020), arXiv: 1907.05101.

    Google Scholar 

  77. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, Nature 562, 101 (2018).

    Article  ADS  Google Scholar 

  78. P. L. Guo, C. Y. Gao, T. Li, X. H. Li, and F. G. Deng, Sci. China-Phys. Mech. Astron. 62, 110301 (2019).

    Article  ADS  Google Scholar 

  79. P. Zhao, L. Zhou, W. Zhong, and Y. B. Sheng, Eurphys. Lett. 135, 40001 (2021).

    Article  ADS  Google Scholar 

  80. D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, Phys. Rev. Lett. 119, 223602 (2017), arXiv: 1708.08852.

    Article  ADS  Google Scholar 

  81. L. You, Nanophotonics 9, 2673 (2020), arXiv: 2006.00411.

    Article  Google Scholar 

  82. Y. H. Luo, M. C. Chen, M. Erhard, H. S. Zhong, D. Wu, H. Y. Tang, Q. Zhao, X. L. Wang, K. Fujii, L. Li, N. L. Liu, K. Nemoto, W. J. Munro, C. Y. Lu, A. Zeilinger, and J. W. Pan, Proc. Natl. Acad. Sci. USA 118, e2026250118 (2021), arXiv: 2009.06242.

    Article  Google Scholar 

  83. M. H. Abobeih, Y. Wang, J. Randall, S. J. H. Loenen, C. E. Bradley, M. Markham, D. J. Twitchen, B. M. Terhal, and T. H. Taminiau, Nature 606, 884 (2022), arXiv: 2108.01646.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11904171, and 62221004), and the Fundamental Research Funds for the Central Universities (Grant No. 30922010807).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xie, Z., Li, Y. et al. Heralded entanglement between error-protected logical qubits for fault-tolerant distributed quantum computing. Sci. China Phys. Mech. Astron. 67, 220311 (2024). https://doi.org/10.1007/s11433-023-2245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2245-9

Navigation