Skip to main content
Log in

Reshaping plasmon modes by film interference

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Localized surface plasmon resonances (LSPRs) in metal nanostructures have been a central subject of nano-photonics due to their ability to manipulate light beyond the optical diffraction limit. Nevertheless, the large intrinsic dissipations of LSPRs have severely hindered their applications, so the on-demand control of the LSPR modes is highly desired and remains open yet. Here, we experimentally and theoretically demonstrate that the plasmon mode can be effectively engineered by interacting with constructive or destructive modes supported by film interference. When a metal nanoparticle interacts with a constructive mode, the dissipation linewidth of its LSPR mode shows a significant reduction of 58%. Simultaneously, the scattering intensity is remarkably enhanced, in vast favor of measuring weak signals from small nanoparticles. Furthermore, the film-destructive-interference splitting in the scattering spectrum by weak coupling, rather than strong coupling, is revealed if the plasmon particles interact with the destructive mode, resulting in two new hybrid plasmon modes with narrow linewidths. The effective polarizability model of reshaping the LSPR modes by the film interference is present to well understand the experimental observations. Our work may pave the way toward low-loss plasmonic photonics and its practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

    Google Scholar 

  2. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Nature 450, 402 (2007).

    Article  ADS  Google Scholar 

  3. M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, Nat. Phys. 9, 329 (2013), arXiv: 1312.6806.

    Article  Google Scholar 

  4. Y. W. Lu, J. F. Liu, Z. Liao, and X. H. Wang, Sci. China-Phys. Mech. Astron. 64, 274212 (2021).

    Article  ADS  Google Scholar 

  5. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, Nano Lett. 5, 1569 (2005).

    Article  ADS  Google Scholar 

  6. Y. Zhang, Y. R. Zhen, O. Neumann, J. K. Day, P. Nordlander, and N. J. Halas, Nat. Commun. 5, 4424 (2014).

    Article  ADS  Google Scholar 

  7. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Phys. Rev. Lett. 83, 4357 (1999).

    Article  ADS  Google Scholar 

  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, Nat. Mater. 7, 442 (2008).

    Article  ADS  Google Scholar 

  9. R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, Nature 498, 82 (2013).

    Article  ADS  Google Scholar 

  10. Y. Tanaka, S. Kaneda, and K. Sasaki, Nano Lett. 13, 2146 (2013).

    Article  ADS  Google Scholar 

  11. M. L. Juan, M. Righini, and R. Quidant, Nat. Photon. 5, 349 (2011).

    Article  ADS  Google Scholar 

  12. X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, and H. Misawa, Nat. Nanotech. 13, 953 (2018).

    Article  ADS  Google Scholar 

  13. L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao, L. Henderson, L. Dong, P. Christopher, E. A. Carter, P. Nordlander, and N. J. Halas, Science 362, 69 (2018).

    Article  ADS  Google Scholar 

  14. C. Clavero, Nat. Photon. 8, 95 (2014).

    Article  ADS  Google Scholar 

  15. T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, Nanotechnology 25, 315201 (2014), arXiv: 1405.4475.

    Article  ADS  Google Scholar 

  16. D. Wang, A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, Nat. Nanotech. 12, 889 (2017).

    Article  ADS  Google Scholar 

  17. Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, J. Phys. Chem. Lett. 1, 2031 (2010).

    Article  Google Scholar 

  18. H. A. Atwater, and A. Polman, Nat. Mater. 9, 205 (2010).

    Article  ADS  Google Scholar 

  19. P. Törmä, and W. L. Barnes, Rep. Prog. Phys. 78, 013901 (2015), arXiv: 1405.1661.

    Article  ADS  Google Scholar 

  20. J. Ye, Y. Pan, G. Liu, W. Li, R. Liu, M. Geng, Z. Liu, Z. Chi, X. Ran, Y. Kuang, Y. He, and L. Guo, Sci. China-Phys. Mech. Astron. 66, 244212 (2023).

    Article  ADS  Google Scholar 

  21. W. Li, R. Liu, J. Li, J. Zhong, Y. W. Lu, H. Chen, and X. H. Wang, Phys. Rev. Lett. 130, 143601 (2023).

    Article  ADS  Google Scholar 

  22. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).

    Article  ADS  Google Scholar 

  23. M. Cargnello, V. V. T. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero, and C. B. Murray, Science 341, 771 (2013).

    Article  ADS  Google Scholar 

  24. C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, Nature 556, 483 (2018).

    Article  ADS  Google Scholar 

  25. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002).

    Article  ADS  Google Scholar 

  26. G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, Science 358, 640 (2017).

    Article  ADS  Google Scholar 

  27. B. Foerster, V. A. Spata, E. A. Carter, C. Sönnichsen, and S. Link, Sci. Adv. 5, eaav0704 (2019).

    Article  ADS  Google Scholar 

  28. M. Bosman, L. Zhang, H. Duan, S. F. Tan, C. A. Nijhuis, C. Qiu, and J. K. W. Yang, Sci. Rep. 4, 5537 (2014).

    Article  ADS  Google Scholar 

  29. M. K. Kim, S. H. Lee, M. Choi, B. H. Ahn, N. Park, Y. H. Lee, and B. Min, Opt. Express 18, 11089 (2010).

    Article  ADS  Google Scholar 

  30. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, Laser Photon. Rev. 4, 795 (2010), arXiv: 0911.2737.

    Article  ADS  Google Scholar 

  31. Y. Wang, J. Yu, Y. F. Mao, J. Chen, S. Wang, H. Z. Chen, Y. Zhang, S. Y. Wang, X. Chen, T. Li, L. Zhou, R. M. Ma, S. Zhu, W. Cai, and J. Zhu, Nature 581, 401 (2020).

    Article  ADS  Google Scholar 

  32. A. Boltasseva, and H. A. Atwater, Science 331, 290 (2011).

    Article  ADS  Google Scholar 

  33. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, Opt. Express 15, 176 (2007).

    Article  ADS  Google Scholar 

  34. V. Giannini, G. Vecchi, and J. Gómez Rivas, Phys. Rev. Lett. 105, 266801 (2010).

    Article  ADS  Google Scholar 

  35. W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, Opt. Lett. 37, 3366 (2012).

    Article  ADS  Google Scholar 

  36. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, Nano Lett. 9, 2188 (2009).

    Article  ADS  Google Scholar 

  37. A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, Nano Lett. 15, 6946 (2015).

    Article  ADS  Google Scholar 

  38. Y. Liang, K. Koshelev, F. Zhang, H. Lin, S. Lin, J. Wu, B. Jia, and Y. Kivshar, Nano Lett. 20, 6351 (2020).

    Article  ADS  Google Scholar 

  39. S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, Phys. Rev. Lett. 121, 253901 (2018), arXiv: 1808.08244.

    Article  ADS  Google Scholar 

  40. P. Peng, Y. C. Liu, D. Xu, Q. T. Cao, G. Lu, Q. Gong, and Y. F. Xiao, Phys. Rev. Lett. 119, 233901 (2017).

    Article  ADS  Google Scholar 

  41. P. Wang, Y. Wang, Z. Yang, X. Guo, X. Lin, X. C. Yu, Y. F. Xiao, W. Fang, L. Zhang, G. Lu, Q. Gong, and L. Tong, Nano Lett. 15, 7581 (2015).

    Article  ADS  Google Scholar 

  42. H. M. Doeleman, E. Verhagen, and A. F. Koenderink, ACS Photon. 3, 1943 (2016).

    Article  Google Scholar 

  43. C. Cherqui, M. R. Bourgeois, D. Wang, and G. C. Schatz, Acc. Chem. Res. 52, 2548 (2019).

    Article  Google Scholar 

  44. V. G. Kravets, F. Schedin, and A. N. Grigorenko, Phys. Rev. Lett. 101, 087403 (2008).

    Article  ADS  Google Scholar 

  45. X. Yu, L. Shi, D. Han, J. Zi, and P. V. Braun, Adv. Funct. Mater. 20, 1910 (2010).

    Article  Google Scholar 

  46. Z. Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K. P. Chen, ACS Photon. 4, 2212 (2017).

    Article  Google Scholar 

  47. F. J. Rodríguez-Fortuño, M. Martínez-Marco, B. Tomás-Navarro, R. Ortuño, J. Martí, A. Martínez, and P. J. Rodríguez-Cantó, Appl. Phys. Lett. 98, 133118 (2011).

    Article  ADS  Google Scholar 

  48. H. C. van de Hulst, Nature 182, 1470 (1958).

    Google Scholar 

  49. X. Hong, E. M. P. H. van Dijk, S. R. Hall, J. B. Gotte, N. F. van Hulst, and H. Gersen, Nano Lett. 11, 541 (2011).

    Article  ADS  Google Scholar 

  50. M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, Phys. Chem. Chem. Phys. 8, 3486 (2006).

    Article  Google Scholar 

  51. Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, Adv. Opt. Mater. 2, 65 (2014).

    Article  Google Scholar 

  52. P. Kekicheff, and O. Spalla, Langmuir 10, 1584 (1994).

    Article  Google Scholar 

  53. A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).

    Article  ADS  Google Scholar 

  54. Y. Zhang, Q. S. Meng, L. Zhang, Y. Luo, Y. J. Yu, B. Yang, Y. Zhang, R. Esteban, J. Aizpurua, Y. Luo, J. L. Yang, Z. C. Dong, and J. G. Hou, Nat. Commun. 8, 15225 (2017).

    Article  ADS  Google Scholar 

  55. X. Xu, and S. Jin, Sci. Adv. 6, abb3095 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Xue-Hua Wang.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2021YFA1400800), the Key-Area Research and Development Program of Guangdong Province (Grant No. 2018B030329001), the Guangdong Special Support Program (Grant No. 2019JC05X397), and the Key Project of Natural Science Foundation of Henan (Grant No. 232300421141). We thank Dr. Yuwei Lu for his assistance with the theoretical analysis.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, W., Li, J. et al. Reshaping plasmon modes by film interference. Sci. China Phys. Mech. Astron. 66, 114211 (2023). https://doi.org/10.1007/s11433-023-2183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2183-5

Navigation