Skip to main content
Log in

Pressure induced color change and evolution of metallic behavior in nitrogen-doped lutetium hydride

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

By applying pressures up to 42 GPa on the nitrogen-doped lutetium hydride (LuH2+xNy), we have found a gradual change of color from dark-blue to pink-violet in the pressure region of about 12 to 21 GPa. The temperature dependence of resistivity under pressures up to 50.5 GPa shows progressively optimized metallic behavior with pressure. Interestingly, in the pressure region for the color change, a clear decrease of resistivity is observed with the increase of pressure, which is accompanied by a clear increase of the residual resistivity ratio (RRR). Fitting to the low temperature resistivity gives exponents of about 2, suggesting a Fermi-liquid behavior in the low temperature region. The general behavior in a wide temperature region suggests that the electron-phonon scattering is still the dominant one. The magnetoresistance up to 9 T in the state under a pressure of 50.5 GPa shows an almost negligible effect, which suggests that the electric conduction in the pink-violet state is dominated by a single band. It is highly desired to have theoretical efforts in understanding the evolution of color and resistivity in this interesting system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. L. Ginzburg, Physics-Uspekhi 42, 353 (1999).

    Article  ADS  Google Scholar 

  2. E. Snider, N. Dasenbrock-Gammon, R. McBride, M. Debessai, H. Vindana, K. Vencatasamy, K. V. Lawler, A. Salamat, and R. P. Dias, Nature 586, 373 (2020).

    Article  ADS  Google Scholar 

  3. J. E. Hirsch, and F. Marsiglio, Nature 596, E9 (2021).

    Article  ADS  Google Scholar 

  4. N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee, N. Khalvashi-Sutter, S. Munasinghe, S. E. Dissanayake, K. V. Lawler, A. Salamat, and R. P. Dias, Nature 615, 244 (2023).

    Article  ADS  Google Scholar 

  5. A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Nature 525, 73 (2015).

    Article  ADS  Google Scholar 

  6. H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, Proc. Natl. Acad. Sci. USA 114, 6990 (2017).

    Article  ADS  Google Scholar 

  7. Y. Sun, J. Lv, Y. Xie, H. Liu, and Y. Ma, Phys. Rev. Lett. 123, 097001 (2019).

    Article  ADS  Google Scholar 

  8. W. Chen, D. V. Semenok, X. Huang, H. Shu, X. Li, D. Duan, T. Cui, and A. R. Oganov, Phys. Rev. Lett. 127, 117001 (2021).

    Article  ADS  Google Scholar 

  9. F. Hong, P. F. Shan, L. X. Yang, B. B. Yue, P. T. Yang, Z. Y. Liu, J. P. Sun, J. H. Dai, H. Yu, Y. Y. Yin, X. H. Yu, J. G. Cheng, and Z. X. Zhao, Mater. Today Phys. 22, 100596 (2022).

    Article  Google Scholar 

  10. L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang, M. Zhou, H. Liu, X. Yu, Y. Zhao, H. Wang, G. Liu, and Y. Ma, Phys. Rev. Lett. 128, 167001 (2022).

    Article  ADS  Google Scholar 

  11. Z. Li, X. He, C. Zhang, X. Wang, S. Zhang, Y. Jia, S. Feng, K. Lu, J. Zhao, J. Zhang, B. Min, Y. Long, R. Yu, L. Wang, M. Ye, Z. Zhang, V. Prakapenka, S. Chariton, P. A. Ginsberg, J. Bass, S. Yuan, H. Liu, and C. Jin, Nat. Commun. 13, 2863 (2022).

    Article  ADS  Google Scholar 

  12. M. Shao, S. Chen, W. Chen, K. Zhang, X. Huang, and T. Cui, Inorg. Chem. 60, 15330 (2021).

    Article  Google Scholar 

  13. A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, Nature 569, 528 (2019).

    Article  ADS  Google Scholar 

  14. F. Hong, L. Yang, P. Shan, P. Yang, Z. Liu, J. Sun, Y. Yin, X. Yu, J. Cheng, and Z. Zhao, Chin. Phys. Lett. 37, 107401 (2020).

    Article  ADS  Google Scholar 

  15. P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin, S. Mozaffari, L. Balicas, F. F. Balakirev, V. B. Prakapenka, S. Chariton, D. A. Knyazev, E. Greenberg, and M. I. Eremets, Nat. Commun. 12, 5075 (2021).

    Article  ADS  Google Scholar 

  16. N. W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004).

    Article  ADS  Google Scholar 

  17. Z. Zhang, T. Cui, M. J. Hutcheon, A. M. Shipley, H. Song, M. Du, V. Z. Kresin, D. Duan, C. J. Pickard, and Y. Yao, Phys. Rev. Lett. 128, 047001 (2022).

    Article  ADS  Google Scholar 

  18. S. Di Cataldo, C. Heil, W. von der Linden, and L. Boeri, Phys. Rev. B 104, L020511 (2021).

    Article  ADS  Google Scholar 

  19. Z. Li, X. He, C. Zhang, K. Lu, B. Min, J. Zhang, S. Zhang, J. Zhao, L. Shi, Y. Peng, S. Feng, Z. Deng, J. Song, Q. Liu, X. Wang, R. Yu, L. Wang, Y. Li, J. D. Bass, V. Prakapenka, S. Chariton, H. Liu, and C. Jin, Sci. China-Phys. Mech. Astron. 66, 267411 (2023).

    Article  ADS  Google Scholar 

  20. M. Liu, X. Liu, J. Li, J. Liu, Y. Sun, X.-Q. Chen, and P. Liu, arXiv: 2303.06554 (2023).

  21. P. Shan, N. Wang, X. Zheng, Q. Qiu, Y. Peng, and J. Cheng, Chin. Phys. Lett. 40, 046101 (2023).

    Article  ADS  Google Scholar 

  22. X. Ming, Y.-J. Zhang, X. Zhu, Q. Li, C. He, Y. Liu, B. Zheng, H. Yang, and H.-H. Wen, arXiv: 2303.08759.

  23. S. Zhang, J. Bi, R. Zhang, P. Li, F. Qi, Z. Wei, and Y. Cao, arXiv: 2303.11063.

  24. F. Xie, T. Lu, Z. Yu, Y. Wang, Z. Wang, S. Meng, and M. Liu, arXiv: 2303.11683.

  25. Z. Huo, D. Duan, T. Ma, Q. Jiang, Z. Zhang, D. An, F. Tian, and T. Cui, arXiv: 2303.12575.

  26. H. M. Rietveld, J Appl. Cryst. 2, 65 (1969).

    Article  Google Scholar 

  27. J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, and M. Eremets, Phys. Rep. 856, 1 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  28. H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91, 4673 (1986).

    Article  ADS  Google Scholar 

  29. V. D. Dobrovolsky, O. G. Ershova, Y. M. Solonin, R. A. Morozova, and E. M. Severyanina, J. Alloys Compd. 490, 68 (2010).

    Article  Google Scholar 

  30. T. Dierkes, J. Plewa, and T. Jüstel, J. Alloys Compd. 693, 291 (2017).

    Article  Google Scholar 

  31. A. Bid, A. Bora, and A. K. Raychaudhuri, Phys. Rev. B 74, 035426 (2006).

    Article  ADS  Google Scholar 

  32. G. Baym, and C. Pethick, Landau Fermi Liquid Theory (Wiley, New York, 1991).

    Book  Google Scholar 

  33. H. Yang, Y. Liu, C. Zhuang, J. Shi, Y. Yao, S. Massidda, M. Monni, Y. Jia, X. Xi, Q. Li, Z. K. Liu, Q. Feng, and H. H. Wen, Phys. Rev. Lett. 101, 067001 (2008).

    Article  ADS  Google Scholar 

  34. Z. Y. Liu, Q. X. Dong, P. T. Yang, P. F. Shan, B. S. Wang, J. P. Sun, Z. L. Dun, Y. Uwatoko, G. F. Chen, X. L. Dong, Z. X. Zhao, and J. G. Cheng, Phys. Rev. Lett. 128, 187001 (2022).

    Article  ADS  Google Scholar 

  35. Q. Li, J. Si, T. Duan, X. Zhu, and H. H. Wen, Philos. Mag. 100, 2402 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Li, Xiyu Zhu or Hai-Hu Wen.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2022YFA1403201), the National Natural Science Foundation of China (Grant Nos. 12061131001, 12204231, 52072170, and 11927809), and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB25000000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YJ., Ming, X., Li, Q. et al. Pressure induced color change and evolution of metallic behavior in nitrogen-doped lutetium hydride. Sci. China Phys. Mech. Astron. 66, 287411 (2023). https://doi.org/10.1007/s11433-023-2109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2109-4

Navigation