Skip to main content
Log in

Strong coupling between a plasmon mode and multiple different exciton states

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Strong coupling between plasmons and multiple different exciton states (MESs) enables the creation of multiple hybrid polariton states under ambient conditions. These hybrid states possess unique optical properties different from those of their separate identities, making them ideal candidates for exploiting room-temperature multimode hybridization and multiqubit operation. In this study, we revealed the static spectral response properties of plasmon-MES strong coupling via a fully quantum mechanics approach. These theoretical predictions were experimentally demonstrated in plasmonic nanocavities containing two and three different exciton species. Additionally, the dynamical absorption processes of such strong coupling systems were investigated, and results indicated that the damping of the hybrid polariton states induced by the strong coupling could be markedly modulated by the acoustic oscillations from the plasmonic nanocavities. Our findings contribute a theoretical approach for accurately describing the plasmon-MES interactions and a platform for developing the high-speed active plasmonic devices based on multiqubit strong coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Törmä, and W. L. Barnes, Rep. Prog. Phys. 78, 013901 (2015), arXiv: 1405.1661.

    Article  ADS  Google Scholar 

  2. C. Tserkezis, A. I. Fernández-Domínguez, P. A. D. Gonçalves, F. Todisco, J. D. Cox, K. Busch, N. Stenger, S. I. Bozhevolnyi, N. A. Mortensen, and C. Wolff, Rep. Prog. Phys. 83, 082401 (2020), arXiv: 1907.02605.

    Article  ADS  Google Scholar 

  3. D. Xu, X. Xiong, L. Wu, X. F. Ren, C. E. Png, G. C. Guo, Q. Gong, and Y. F. Xiao, Adv. Opt. Photon. 10, 703 (2019).

    Article  Google Scholar 

  4. D. Najer, I. Söllner, P. Sekatski, V. Dolique, M. C. Löbl, D. Riedel, R. Schott, S. Starosielec, S. R. Valentin, A. D. Wieck, N. Sangouard, A. Ludwig, and R. J. Warburton, Nature 575, 622 (2019), arXiv: 1812.08662.

    Article  ADS  Google Scholar 

  5. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, Nat. Photon. 6, 605 (2012), arXiv: 1111.2915.

    Article  ADS  Google Scholar 

  6. W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, Science 341, 768 (2013), arXiv: 1401.3194.

    Article  ADS  Google Scholar 

  7. T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014), arXiv: 1404.5615.

    Article  ADS  Google Scholar 

  8. H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, Nat. Photon. 7, 373 (2013), arXiv: 1304.0776.

    Article  ADS  Google Scholar 

  9. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, Nature 445, 896 (2007), arXiv: quant-ph/0610034.

    Article  ADS  Google Scholar 

  10. G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, Phys. Rev. Lett. 114, 157401 (2015), arXiv: 1501.02123.

    Article  ADS  Google Scholar 

  11. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006), arXiv: quant-ph/0606033.

    Article  ADS  Google Scholar 

  12. H. Takahashi, E. Kassa, C. Christoforou, and M. Keller, Phys. Rev. Lett. 124, 013602 (2020), arXiv: 1808.04031.

    Article  ADS  Google Scholar 

  13. P. Samutpraphoot, T. Đorđević, P. L. Ocola, H. Bernien, C. Senko, V. Vuletić, and M. D. Lukin, Phys. Rev. Lett. 124, 063602 (2020), arXiv: 1909.09108.

    Article  ADS  Google Scholar 

  14. A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, Science 354, 847 (2016), arXiv: 1608.05147.

    Article  ADS  Google Scholar 

  15. R. Bose, T. Cai, K. R. Choudhury, G. S. Solomon, and E. Waks, Nat. Photon. 8, 858 (2014), arXiv: 1408.3384.

    Article  ADS  Google Scholar 

  16. M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, Nat. Commun. 8, 1296 (2017), arXiv: 1704.02756.

    Article  ADS  Google Scholar 

  17. D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, Nano Lett. 17, 3809 (2017).

    Article  ADS  Google Scholar 

  18. J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, Nano Lett. 17, 4689 (2017).

    Article  ADS  Google Scholar 

  19. J. Heintz, N. Markešević, E. Y. Gayet, N. Bonod, and S. Bidault, ACS Nano 15, 14732 (2021).

    Article  Google Scholar 

  20. J. M. Winkler, F. T. Rabouw, A. A. Rossinelli, S. V. Jayanti, K. M. McPeak, D. K. Kim, B. le Feber, F. Prins, and D. J. Norris, Nano Lett. 19, 108 (2019).

    Article  ADS  Google Scholar 

  21. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, Phys. Rev. Lett. 103, 053602 (2009), arXiv: 0902.0710.

    Article  ADS  Google Scholar 

  22. D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, Nano Lett. 10, 274 (2010).

    Article  ADS  Google Scholar 

  23. S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, ACS Nano 4, 6369 (2010).

    Article  Google Scholar 

  24. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, Nano Lett. 13, 3281 (2013).

    Article  ADS  Google Scholar 

  25. J. Ren, Y. Gu, D. Zhao, F. Zhang, T. Zhang, and Q. Gong, Phys. Rev. Lett. 118, 073604 (2017).

    Article  ADS  Google Scholar 

  26. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, Nature 535, 127 (2016).

    Article  ADS  Google Scholar 

  27. K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, Nat. Commun. 7, 11823 (2016), arXiv: 1511.00263.

    Article  ADS  Google Scholar 

  28. R. Liu, Z. K. Zhou, Y. C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X. H. Wang, Phys. Rev. Lett. 118, 237401 (2017).

    Article  ADS  Google Scholar 

  29. H. Leng, B. Szychowski, M. C. Daniel, and M. Pelton, Nat. Commun. 9, 4012 (2018).

    Article  ADS  Google Scholar 

  30. H. Groß, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, Sci. Adv. 4, aar4906 (2018).

    Article  ADS  Google Scholar 

  31. K. D. Park, M. A. May, H. Leng, J. Wang, J. A. Kropp, T. Gougousi, M. Pelton, and M. B. Raschke, Sci. Adv. 5, aav5931 (2019), arXiv: 1902.10314.

    Article  ADS  Google Scholar 

  32. L. Liu, L. Y. M. Tobing, T. Wu, B. Qiang, F. J. Garcia-Vidal, D. H. Zhang, Q. J. Wang, and Y. Luo, Optica 8, 1416 (2021).

    Article  ADS  Google Scholar 

  33. J. Y. Li, W. Li, J. Liu, J. Zhong, R. Liu, H. Chen, and X. H. Wang, Nano Lett. 22, 4686 (2022).

    Article  ADS  Google Scholar 

  34. M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, Phys. Rev. Lett. 101, 226808 (2008), arXiv: 0808.2890.

    Article  ADS  Google Scholar 

  35. Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, Phys. Rev. Lett. 107, 233602 (2011), arXiv: 1107.0372.

    Article  ADS  Google Scholar 

  36. C. Qian, S. Wu, F. Song, K. Peng, X. Xie, J. Yang, S. Xiao, M. J. Steer, I. G. Thayne, C. Tang, Z. Zuo, K. Jin, C. Gu, and X. Xu, Phys. Rev. Lett. 120, 213901 (2018), arXiv: 1805.09184.

    Article  ADS  Google Scholar 

  37. A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, Phys. Rev. B 82, 075305 (2010), arXiv: 0912.3685.

    Article  ADS  Google Scholar 

  38. H. Kim, D. Sridharan, T. C. Shen, G. S. Solomon, and E. Waks, Opt. Express 19, 2589 (2011).

    Article  ADS  Google Scholar 

  39. J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, Nano Lett. 18, 1777 (2018), arXiv: 1703.07873.

    Article  ADS  Google Scholar 

  40. A. B. Vasista, and W. L. Barnes, J. Phys. Chem. Lett. 13, 1019 (2022).

    Article  Google Scholar 

  41. D. Melnikau, A. A. Govyadinov, A. Sánchez-Iglesias, M. Grzelczak, I. R. Nabiev, L. M. Liz-Marzán, and Y. P. Rakovich, J. Phys. Chem. Lett. 10, 6137 (2019).

    Article  Google Scholar 

  42. D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, Nat. Mater. 13, 712 (2014).

    Article  ADS  Google Scholar 

  43. W. Zhang, J. B. You, J. Liu, X. Xiong, Z. Li, C. E. Png, L. Wu, C. W. Qiu, and Z. K. Zhou, Nano Lett. 21, 8979 (2021).

    Article  ADS  Google Scholar 

  44. P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, Nat. Photon. 7, 128 (2013).

    Article  ADS  Google Scholar 

  45. Y. Tang, Y. Zhang, Q. Liu, K. Wei, X. Cheng, L. Shi, and T. Jiang, Light. Sci. Appl. 11, 94 (2022).

    Article  ADS  Google Scholar 

  46. A. Manjavacas, F. J. García de Abajo, and P. Nordlander, Nano Lett. 11, 2318 (2011).

    Article  ADS  Google Scholar 

  47. R. Liu, Z. Liao, Y. C. Yu, and X. H. Wang, Phys. Rev. B 103, 235430 (2021), arXiv: 2003.06982.

    Article  ADS  Google Scholar 

  48. P. Vasa, and C. Lienau, ACS Photon. 5, 2 (2018).

    Article  Google Scholar 

  49. N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, Nano Lett. 11, 1556 (2011).

    Article  ADS  Google Scholar 

  50. D. M. Coles, P. Michetti, C. Clark, A. M. Adawi, and D. G. Lidzey, Phys. Rev. B 84, 205214 (2011).

    Article  ADS  Google Scholar 

  51. D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, Adv. Funct. Mater. 21, 3691 (2011).

    Article  Google Scholar 

  52. T. J. Antosiewicz, S. P. Apell, and T. Shegai, ACS Photon. 1, 454 (2014).

    Article  Google Scholar 

  53. Z. J. Yang, T. J. Antosiewicz, and T. Shegai, Opt. Express 24, 20373 (2016).

    Article  ADS  Google Scholar 

  54. M. S. Kirschner, W. Ding, Y. Li, C. T. Chapman, A. Lei, X. M. Lin, L. X. Chen, G. C. Schatz, and R. D. Schaller, Nano Lett. 18, 442 (2018).

    Article  ADS  Google Scholar 

  55. M. S. Kirschner, Y. Jeong, A. P. Spencer, N. E. Watkins, X. M. Lin, G. C. Schatz, L. X. Chen, and R. D. Schaller, Appl. Phys. Lett. 115, 111903 (2019).

    Article  ADS  Google Scholar 

  56. B. D. Fernandes, M. Spuch-Calvar, H. Baida, M. Tréguer-Delapierre, J. Oberlé, P. Langot, and J. Burgin, ACS Nano 7, 7630 (2013).

    Article  Google Scholar 

  57. K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, Nat. Commun. 5, 4042 (2014).

    Article  ADS  Google Scholar 

  58. W. Du, J. Zhao, W. Zhao, S. Zhang, H. Xu, and Q. Xiong, ACS Photon. 6, 2832 (2019).

    Article  Google Scholar 

  59. A. Lombardi, M. K. Schmidt, L. Weller, W. M. Deacon, F. Benz, B. de Nijs, J. Aizpurua, and J. J. Baumberg, Phys. Rev. X 8, 011016 (2018).

    Google Scholar 

  60. W. Chen, P. Roelli, H. Hu, S. Verlekar, S. P. Amirtharaj, A. I. Barreda, T. J. Kippenberg, M. Kovylina, E. Verhagen, A. Martínez, and C. Galland, Science 374, 1264 (2021), arXiv: 2107.03033.

    Article  ADS  Google Scholar 

  61. Y. Xu, H. Hu, W. Chen, P. Suo, Y. Zhang, S. Zhang, and H. Xu, ACS Nano 16, 12711 (2022).

    Article  Google Scholar 

  62. K. Wu, J. Chen, J. R. McBride, and T. Lian, Science 349, 632 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renming Liu, Xia Ran or Lijun Guo.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11874438, 22105063, 61905066, 61805070, 12004101, and 22103024), Natural Science Foundation of Guangdong (Grant Nos. 2021A1515010050, and 2018A030313722), and Guangdong Polytechnic Normal University Talent Introduction Project Foundation of China (Grant No. XY2019022).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Pan, Y., Liu, G. et al. Strong coupling between a plasmon mode and multiple different exciton states. Sci. China Phys. Mech. Astron. 66, 244212 (2023). https://doi.org/10.1007/s11433-022-2029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2029-9

PACS number(s)

Navigation