Skip to main content
Log in

Unprotected quadratic band crossing points and quantum anomalous Hall effect in FeB2 monolayer

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Quadratic band crossing points (QBCPs) and quantum anomalous Hall effect (QAHE) have attracted the attention of both theoretical and experimental researchers in recent years. Based on first-principle calculations, we find that the FeB2 monolayer is a nonmagnetic semimetal with QBCPs at K. Through symmetry analysis and k · p invariant theory, we find that the QBCP is not protected by rotation symmetry and consists of two Dirac points with the same chirality (Berry phase of 2π). Once introducing Coulomb interactions, we find that there is a spontaneous-time-reversal-breaking instability of the spinful QBCPs, which gives rise to a C = 2 QAH insulator with orbital moment ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009).

    Article  ADS  Google Scholar 

  2. S. Hesselmann, C. Honerkamp, S. Wessel, and T. C. Lang, Phys. Rev. B 101, 075128 (2020), arXiv: 1912.06585.

    Article  ADS  Google Scholar 

  3. G. Montambaux, Eur. Phys. J. B 85, 375 (2012), arXiv: 1205.4459.

    Article  ADS  Google Scholar 

  4. O. Vafek, and K. Yang, Phys. Rev. B 81, 041401 (2010), arXiv: 0906.2483.

    Article  ADS  Google Scholar 

  5. Q. F. Liang, J. Zhou, R. Yu, X. Wang, and H. Weng, Phys. Rev. B 96, 205412 (2017), arXiv: 1705.00254.

    Article  ADS  Google Scholar 

  6. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006), arXiv: cond-mat/0611399.

    Article  ADS  Google Scholar 

  7. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys. 5, 438 (2009).

    Article  Google Scholar 

  8. S. Nie, L. Xing, R. Jin, W. Xie, Z. Wang, and F. B. Prinz, Phys. Rev. B 98, 125143 (2018), arXiv: 1811.02561.

    Article  ADS  Google Scholar 

  9. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011), arXiv: 1007.0016.

    Article  ADS  Google Scholar 

  10. H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015), arXiv: 1501.00060.

    Google Scholar 

  11. S. Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. K. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Science 349, 613 (2015), arXiv: 1502.03807.

    Article  ADS  Google Scholar 

  12. Z. Wang, M. G. Vergniory, S. Kushwaha, M. Hirschberger, E. V. Chulkov, A. Ernst, N. P. Ong, R. J. Cava, and B. A. Bernevig, Phys. Rev. Lett. 117, 236401 (2016), arXiv: 1603.00479.

    Article  ADS  Google Scholar 

  13. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

    Article  ADS  Google Scholar 

  14. R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Science 329, 61 (2010), arXiv: 1002.0946.

    Article  ADS  Google Scholar 

  15. Z. Qiao, S. A. Yang, W. Feng, W. K. Tse, J. Ding, Y. Yao, J. Wang, and Q. Niu, Phys. Rev. B 82, 161414 (2010), arXiv: 1005.1672.

    Article  ADS  Google Scholar 

  16. K. F. Garrity, and D. Vanderbilt, Phys. Rev. Lett. 110, 116802 (2013), arXiv: 1212.2942.

    Article  ADS  Google Scholar 

  17. Y. Xue, J. Y. Zhang, B. Zhao, X. Y. Wei, and Z. Q. Yang, Nanoscale 10, 8569 (2018).

    Article  Google Scholar 

  18. Z. F. Wang, Z. Liu, and F. Liu, Phys. Rev. Lett. 110, 196801 (2013), arXiv: 1302.1088.

    Article  ADS  Google Scholar 

  19. S. Nie, Y. Sun, F. B. Prinz, Z. Wang, H. Weng, Z. Fang, and X. Dai, Phys. Rev. Lett. 124, 076403 (2020), arXiv: 1907.10051.

    Article  ADS  Google Scholar 

  20. C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Science 340, 167 (2013), arXiv: 1605.08829.

    Article  ADS  Google Scholar 

  21. C. Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf, D. Heiman, S. C. Zhang, C. Liu, M. H. W. Chan, and J. S. Moodera, Nat. Mater. 14, 473 (2015), arXiv: 1412.3758.

    Article  ADS  Google Scholar 

  22. Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, Science 367, 895 (2020), arXiv: 1904.11468.

    Article  ADS  Google Scholar 

  23. M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Science 367, 900 (2020), arXiv: 1907.00261.

    Article  ADS  Google Scholar 

  24. L. Z. Zhang, Z. F. Wang, S. X. Du, H. J. Gao, and F. Liu, Phys. Rev. B 90, 161402 (2014).

    Article  ADS  Google Scholar 

  25. H. Zhang, Y. Li, J. Hou, A. Du, and Z. Chen, Nano Lett. 16, 6124 (2016).

    Article  ADS  Google Scholar 

  26. Z. Liu, P. Wang, Q. Cui, G. Yang, S. Jin, and K. Xiong, RSC Adv. 9, 2740 (2019).

    Article  ADS  Google Scholar 

  27. L. G. Voroshnin, L. S. Lyakhovich, G. G. Panich, and G. F. Protasevich, Met. Sci. Heat Treat. 12, 732 (1970).

    Article  ADS  Google Scholar 

  28. X. Yang, Z. Dai, Y. Zhao, and S. Meng, Comput. Mater. Sci. 147, 132 (2018).

    Article  Google Scholar 

  29. A. Ahmadi, M. Masoudi, N. Taghizade, H. Jafari, and M. Faghihnasiri, Physica E 112, 71 (2019).

    Article  ADS  Google Scholar 

  30. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  31. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  32. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  33. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  34. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  35. J. Gao, Q. Wu, C. Persson, and Z. Wang, Comput. Phys. Commun. 261, 107760 (2021), arXiv: 2002.04032.

    Article  Google Scholar 

  36. G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J. M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates, J. Phys.-Condens. Matter 32, 165902 (2020), arXiv: 1907.09788.

    Article  ADS  Google Scholar 

  37. M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, J. Phys. F-Met. Phys. 14, 1205 (1984).

    Article  ADS  Google Scholar 

  38. M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, Phys. F-Met. Phys. 15, 851 (1985).

    Article  ADS  Google Scholar 

  39. Q. S. Wu, S. N. Zhang, H. F. Song, M. Troyer, and A. A. Soluyanov, Comput. Phys. Commun. 224, 405 (2018), arXiv: 1703.07789.

    Article  ADS  Google Scholar 

  40. W. Luo, J. Ji, J. Lu, X. Zhang, and H. Xiang, Phys. Rev. B 101, 195111 (2020), arXiv: 2004.10072.

    Article  ADS  Google Scholar 

  41. R. Bistritzer, and A. H. MacDonald, Proc. Natl. Acad. Sci. 108, 12233 (2011), arXiv: 1009.4203.

    Article  ADS  Google Scholar 

  42. Z. Song, Z. Wang, W. Shi, G. Li, C. Fang, and B. A. Bernevig, Phys. Rev. Lett. 123, 036401 (2019), arXiv: 1807.10676.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhaoPeng Guo or ZhiJun Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974395, 12188101, and U2032204), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), the China Postdoctoral Science Foundation funded project (Grant No. 2021M703461), and the Center for Materials Genome.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Huang, Y., Sun, S. et al. Unprotected quadratic band crossing points and quantum anomalous Hall effect in FeB2 monolayer. Sci. China Phys. Mech. Astron. 65, 256811 (2022). https://doi.org/10.1007/s11433-021-1862-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1862-3

Keywords

Navigation