Skip to main content
Log in

Lattice relaxation, mirror symmetry and magnetic field effects on ultraflat bands in twisted trilayer graphene

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Twisted graphene multilayers exhibit strongly correlated insulating states and superconductivity due to the presence of ultraflat bands near the charge neutral point. In this paper, the response of ultraflat bands to lattice relaxation and a magnetic field in twisted trilayer graphene (tTLG) with different stacking arrangements is investigated by using a full tight-binding model. We show that lattice relaxations are indispensable for understanding the electronic properties of tTLG, in particular, of tTLG in the presence of mirror symmetry. Lattice relaxations renormalize the quasiparticle spectrum near the Fermi energy and change the localization of higher energy flat bands. Furthermore, different from the twisted bilayer graphene, the Hofstadter butterfly spectrum can be realized at laboratory accessible strengths of magnetic field. Our work verifies tTLG as a more tunable platform than the twisted bilayer graphene in strongly correlated phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature 556, 80 (2018), arXiv: 1802.00553.

    Article  ADS  Google Scholar 

  2. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018), arXiv: 1803.02342.

    Article  ADS  Google Scholar 

  3. P. Rickhaus, J. Wallbank, S. Slizovskiy, R. Pisoni, H. Overweg, Y. Lee, M. Eich, M. H. Liu, K. Watanabe, T. Taniguchi, T. Ihn, and K. Ensslin, Nano Lett. 18, 6725 (2018), arXiv: 1802.07317.

    Article  ADS  Google Scholar 

  4. M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Science 367, 900 (2020), arXiv: 1907.00261.

    Article  ADS  Google Scholar 

  5. L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, Nat. Phys. 16, 725 (2020).

    Article  Google Scholar 

  6. A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. A. Kastner, and D. Goldhaber-Gordon, Science 365, 605 (2019), arXiv: 1901.03520.

    Article  ADS  Google Scholar 

  7. H. Yu, and W. Yao, Sci. Bull. 65, 1555 (2020), arXiv: 1912.04691.

    Article  Google Scholar 

  8. L. Huang, M. Z. Zhong, H. X. Deng, B. Li, Z. M. Wei, J. B. Li, and S. H. Wei, Sci. China-Phys. Mech. Astron. 62, 037311 (2019).

    Article  Google Scholar 

  9. R. Bistritzer, and A. H. MacDonald, Proc. Natl. Acad. Sci. USA 108, 12233 (2011), arXiv: 1009.4203.

    Article  ADS  Google Scholar 

  10. Y. H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T. Senthil, Phys. Rev. B 99, 075127 (2019), arXiv: 1805.08232.

    Article  ADS  Google Scholar 

  11. J. Liu, Z. Ma, J. Gao, and X. Dai, Phys. Rev. X 9, 031021 (2019), arXiv: 1903.10419.

    Google Scholar 

  12. A. K. Geim, and I. V. Grigorieva, Nature 499, 419 (2013).

    Article  Google Scholar 

  13. Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J. M. Park, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Nature 583, 215 (2020).

    Article  ADS  Google Scholar 

  14. T. Huang, L. Zhang, and T. Ma, Sci. Bull. 64, 310 (2019), arXiv: 1804.06096.

    Article  Google Scholar 

  15. C. Shen, Y. Chu, Q. S. Wu, N. Li, S. Wang, Y. Zhao, J. Tang, J. Liu, J. Tian, K. Watanabe, T. Taniguchi, R. Yang, Z. Y. Meng, D. Shi, O. V. Yazyev, and G. Zhang, Nat. Phys. 16, 520 (2020), arXiv: 1903.06952.

    Article  Google Scholar 

  16. J. Y. Lee, E. Khalaf, S. Liu, X. Liu, Z. Hao, P. Kim, and A. Vishwanath, Nat. Commun. 10, 5333 (2019), arXiv: 1903.08685.

    Article  ADS  Google Scholar 

  17. G. W. Burg, J. Zhu, T. Taniguchi, K. Watanabe, A. H. MacDonald, and E. Tutuc, Phys. Rev. Lett. 123, 197702 (2019), arXiv: 1907.10106.

    Article  ADS  Google Scholar 

  18. G. Chen, L. Jiang, S. Wu, B. Lyu, H. Li, B. L. Chittari, K. Watanabe, T. Taniguchi, Z. Shi, J. Jung, Y. Zhang, and F. Wang, Nat. Phys. 15, 237 (2019), arXiv: 1803.01985.

    Article  Google Scholar 

  19. T. Cea, N. R. Walet, and F. Guinea, Nano Lett. 19, 8683 (2019), arXiv: 1903.08403.

    Article  ADS  Google Scholar 

  20. G. Y. Zhu, T. Xiang, and G. M. Zhang, Sci. Bull. 63, 1087 (2018), arXiv: 1804.00302.

    Article  Google Scholar 

  21. H. Polshyn, J. Zhu, M. A. Kumar, Y. Zhang, F. Yang, C. L. Tschirhart, M. Serlin, K. Watanabe, T. Taniguchi, A. H. MacDonald, and A. F. Young, Nature 588, 66 (2020), arXiv: 2004.11353.

    Article  ADS  Google Scholar 

  22. S. Chen, M. He, Y. H. Zhang, V. Hsieh, Z. Fei, K. Watanabe, T. Taniguchi, D. H. Cobden, X. Xu, C. R. Dean, and M. Yankowitz, Nat. Phys. 17, 374 (2021), arXiv: 2004.11340.

    Article  Google Scholar 

  23. S. Xu, M. M. Al Ezzi, N. Balakrishnan, A. Garcia-Ruiz, B. Tsim, C. Mullan, J. Barrier, N. Xin, B. A. Piot, T. Taniguchi, K. Watanabe, A. Carvalho, A. Mishchenko, A. K. Geim, V. I. Fal’ko, S. Adam, A. H. C. Neto, K. S. Novoselov, and Y. Shi, Nat. Phys. 353, (2021).

  24. Z. Ma, S. Li, Y. W. Zheng, M. M. Xiao, H. Jiang, J. H. Gao, and X. C. Xie, Sci. Bull. 66, 18 (2021).

    Article  Google Scholar 

  25. C. Lei, L. Linhart, W. Qin, F. Libisch, and A. H. MacDonald, arXiv: 2010.05787.

  26. S. Carr, C. Li, Z. Zhu, E. Kaxiras, S. Sachdev, and A. Kruchkov, Nano Lett. 20, 3030 (2020), arXiv: 1907.00952.

    Article  ADS  Google Scholar 

  27. Q. Jia, X. H. Kong, J. S. Qiao, and W. Ji, Sci. China-Phys. Mech. Astron. 59, 696811 (2016).

    Article  Google Scholar 

  28. Z. Zhu, S. Carr, D. Massatt, M. Luskin, and E. Kaxiras, Phys. Rev. Lett. 125, 116404 (2020), arXiv: 2006.00399.

    Article  ADS  Google Scholar 

  29. X. Li, F. Wu, and A. H. MacDonald, arXiv: 1907.12338.

  30. L. Rademaker, I. V. Protopopov, and D. A. Abanin, Phys. Rev. Res. 2, 033150 (2020), arXiv: 2004.14964.

    Article  Google Scholar 

  31. E. Suárez Morell, M. Pacheco, L. Chico, and L. Brey, Phys. Rev. B 87, 125414 (2013), arXiv: 1301.3052.

    Article  ADS  Google Scholar 

  32. A. Lopez-Bezanilla, and J. L. Lado, Phys. Rev. Res. 2, 033357 (2020), arXiv: 2005.02169.

    Article  Google Scholar 

  33. J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Nature 590, 249 (2021).

    Article  ADS  Google Scholar 

  34. Z. Hao, A. M. Zimmerman, P. Ledwith, E. Khalaf, D. H. Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, and P. Kim, Science 371, 1133 (2021), arXiv: 2012.02773.

    Article  ADS  Google Scholar 

  35. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  36. H. Shi, Z. Zhan, Z. Qi, K. Huang, E. Veen, J. Silva-Guillén, R. Zhang, P. Li, K. Xie, H. Ji, M. I. Katsnelson, S. Yuan, S. Qin, and Z. Zhang, Nat. Commun. 11, 371 (2020), arXiv: 1905.04515.

    Article  ADS  Google Scholar 

  37. J. C. Slater, and G. F. Koster, Phys. Rev. 94, 1498 (1954).

    Article  ADS  Google Scholar 

  38. S. Yuan, H. De Raedt, and M. I. Katsnelson, Phys. Rev. B 82, 115448 (2010), arXiv: 1007.3930.

    Article  ADS  Google Scholar 

  39. S. Mu, G. D. Samolyuk, S. Wimmer, M. C. Troparevsky, S. N. Khan, S. Mankovsky, H. Ebert, and G. M. Stocks, npj Comput. Mater. 5, 1 (2019), arXiv: 1806.03785.

    Article  ADS  Google Scholar 

  40. G. Yu, Z. Wu, Z. Zhan, M. I. Katsnelson, and S. Yuan, Phys. Rev. B 102, 115123 (2020), arXiv: 1908.08439.

    Article  ADS  Google Scholar 

  41. J. H. Los, and A. Fasolino, Phys. Rev. B 68, 024107 (2003).

    Article  ADS  Google Scholar 

  42. A. N. Kolmogorov, and V. H. Crespi, Phys. Rev. B 71, 235415 (2005).

    Article  ADS  Google Scholar 

  43. N. N. T. Nam, and M. Koshino, Phys. Rev. B 96, 075311 (2017), arXiv: 1706.03908.

    Article  ADS  Google Scholar 

  44. M. M. Wijk, A. Schuring, M. I. Katsnelson, and A. Fasolino, 2D Mater. 2, 034010 (2015), arXiv: 1503.02540.

    Article  Google Scholar 

  45. P. Lucignano, D. Alfè, V. Cataudella, D. Ninno, and G. Cantele, Phys. Rev. B 99, 195419 (2019), arXiv: 1902.02690.

    Article  ADS  Google Scholar 

  46. M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Science 363, 1059 (2019), arXiv: 1808.07865.

    Article  ADS  Google Scholar 

  47. X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, Y. Ronen, H. Yoo, D. Haei Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, and P. Kim, Nature 583, 221 (2020).

    Article  ADS  Google Scholar 

  48. H. Nishi, Y. Matsushita, and A. Oshiyama, Phys. Rev. B 95, 085420 (2017), arXiv: 1609.05297.

    Article  ADS  Google Scholar 

  49. P. Stepanov, I. Das, X. Lu, A. Fahimniya, K. Watanabe, T. Taniguchi, F. H. L. Koppens, J. Lischner, L. Levitov, and D. K. Efetov, Nature 583, 375 (2020), arXiv: 1911.09198.

    Article  ADS  Google Scholar 

  50. A. S. Alexandrov, J. Ranninger, and S. Robaszkiewicz, Phys. Rev. B 33, 4526 (1986).

    Article  ADS  Google Scholar 

  51. Z. F. Wang, F. Liu, and M. Y. Chou, Nano Lett. 12, 3833 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Zhan or Shengjun Yuan.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11774269, and 12047543), the National Key R&D Program of China (Grant No. 2018FYA0305800), and the Natural Science Foundation of Hubei Province, China (Grant No. 2020CFA041). Numerical calculations presented in this paper were performed on the supercomputing system in the Supercomputing Center of Wuhan University.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhan, Z. & Yuan, S. Lattice relaxation, mirror symmetry and magnetic field effects on ultraflat bands in twisted trilayer graphene. Sci. China Phys. Mech. Astron. 64, 267811 (2021). https://doi.org/10.1007/s11433-020-1690-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1690-4

Navigation