Skip to main content
Log in

Theory for frequent measurements of spontaneous emissions in a non-Markovian environment: Beyond the Lorentzian spectrum

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The measurement-result-conditioned evolution of a system (e.g., an atom) with spontaneous emissions of photons is described by the quantum trajectory (QT) theory. In this work we generalize the associated QT theory from an infinitely wide bandwidth Markovian environment to the finite bandwidth non-Markovian environment. In particular, we generalize the treatment for an arbitrary spectrum, which is not restricted by the specific Lorentzian case. We rigorously prove the general existence of a perfect scaling behavior jointly defined by the bandwidth of the environment and the time interval between successive photon detections. For a couple of examples, we obtain analytic results to facilitate the QT simulations based on the Monte-Carlo algorithm. For the case where the analytical result is not available, a numerical scheme is proposed for practical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    MATH  Google Scholar 

  2. H. M. Wiseman, and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009).

    Book  Google Scholar 

  3. K. Jacobs, Quantum Measurement Theory and Its Applications (Cambridge University Press, Cambridge, 2014).

    Book  Google Scholar 

  4. J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68, 580 (1992).

    Article  ADS  Google Scholar 

  5. H. M. Wiseman, and G. J. Milburn, Phys. Rev. A 47, 642 (1993).

    Article  ADS  Google Scholar 

  6. A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, and A. N. Korotkov, Nat. Phys. 6, 442 (2010), arXiv: 1005.3435.

    Article  Google Scholar 

  7. J. P. Groen, D. Ristè, L. Tornberg, J. Cramer, P. C. de Groot, T. Picot, G. Johansson, and L. DiCarlo, Phys. Rev. Lett. 111, 090506 (2013), arXiv: 1302.5147.

    Article  ADS  Google Scholar 

  8. A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Türeci, and A. A. Houck, Phys. Rev. Lett. 107, 053602 (2011), arXiv: 1008.5158.

    Article  ADS  Google Scholar 

  9. M. Mariantoni, H. Wang, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, Nat. Phys. 7, 287 (2011), arXiv: 1011.3080.

    Article  Google Scholar 

  10. M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K. M. Sliwa, B. Abdo, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and M. H. Devoret, Science 339, 178 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  11. K. W. Murch, S. J. Weber, C. Macklin, and I. Siddiqi, Nature 502, 211 (2013), arXiv: 1305.7270.

    Article  ADS  Google Scholar 

  12. R. Vijay, C. Macklin, D. H. Slichter, S. J. Weber, K.W. Murch, R. Naik, A. N. Korotkov, and I. Siddiqi, Nature 490, 77 (2012).

    Article  ADS  Google Scholar 

  13. D. Ristè, J. G. van Leeuwen, H. S. Ku, K. W. Lehnert, and L. DiCarlo, Phys. Rev. Lett. 109, 050507 (2012).

    Article  ADS  Google Scholar 

  14. P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, P. Morfin, M. Mirrahimi, M. H. Devoret, F. Mallet, and B. Huard, Phys. Rev. X 3, 021008 (2013).

    Google Scholar 

  15. L. Xu, and X. Q. Li, Phys. Rev. A 94, 032130 (2016), arXiv: 1412.7895.

    Article  ADS  Google Scholar 

  16. L. Xu, Y. Cao, X. Q. Li, Y. J. Yan, and S. Gurvitz, Phys. Rev. A 90, 022108 (2014), arXiv: 1401.3159.

    Article  ADS  Google Scholar 

  17. G. Kurizki, and A. G. Kofman, Nature 405, 546 (2000).

    Article  ADS  Google Scholar 

  18. J. Ping, Y. Ye, L. Xu, X. Q. Li, Y. J. Yan, and S. Gurvitz, Phys. Lett. A 377, 676 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  19. L. Xu, and X. Q. Li, Sci. Rep. 8, 531 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Qi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Li, XQ. Theory for frequent measurements of spontaneous emissions in a non-Markovian environment: Beyond the Lorentzian spectrum. Sci. China Phys. Mech. Astron. 62, 980312 (2019). https://doi.org/10.1007/s11433-019-9367-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9367-5

Keywords

Navigation