Skip to main content
Log in

Electronic effect of doped oxygen atoms in Bi2201 superconductors determined by scanning tunneling microscopy

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Oxygen dopants are essential for tuning the electronic properties of the cuprate superconductors Bi2Sr2Can−1CunO2n+4+δ. Here, we study an optimally doped Bi2Sr2−xLaxCuO6+δ and an overdoped Bi2−yPbySr2CuO6+δ by scanning tunneling microscopy and spectroscopy (STM/STS). Based on the characteristic features of local STS, three forms of oxygen dopants are identified: interstitial oxygen atoms on the SrO layers, oxygen vacancies on the SrO layers, and interstitial oxygen atoms on the BiO layers. In both samples, the first form dominates the number of oxygen dopants. From the extracted spatial distribution of the oxygen dopants, we calculate the dopant concentrations and estimate the average hole carrier density. The magnitudes of the electronic pseudogap state in both samples are inhomogeneously distributed in space. The statistical analysis on the spatial distributions of the oxygen dopants and the pseudogap magnitude demonstrates that the doped oxygen atoms on the SrO layers tend to suppress the nearby pseudogap magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys. 78, 17 (2006).

    Article  ADS  Google Scholar 

  2. B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature 518, 179 (2015).

    Article  ADS  Google Scholar 

  3. A. Matsuda, S. Sugita, and T. Watanabe, Phys. Rev. B 60, 1377 (1999).

    Article  ADS  Google Scholar 

  4. S. Hüfner, M. A. Hossain, A. Damascelli, and G. A. Sawatzky, Rep. Prog. Phys. 71, 062501 (2008), arXiv: 0706.4282.

    Article  ADS  Google Scholar 

  5. Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Rev. Mod. Phys. 79, 353 (2007).

    Article  ADS  Google Scholar 

  6. K. McElroy, Science 309, 1048 (2005).

    Article  ADS  Google Scholar 

  7. I. Zeljkovic, Z. Xu, J. Wen, G. Gu, R. S. Markiewicz, and J. E. Hoffman, Science 337, 320 (2012).

    Article  ADS  Google Scholar 

  8. I. Zeljkovic, J. Nieminen, D. Huang, T. R. Chang, Y. He, H. T. Jeng, Z. Xu, J. Wen, G. Gu, H. Lin, R. S. Markiewicz, A. Bansil, and J. E. Hoffman, Nano Lett. 14, 6749 (2014), arXiv: 1412.6088.

    Article  ADS  Google Scholar 

  9. D. L. Feng, A. Damascelli, K. M. Shen, N. Motoyama, D. H. Lu, H. Eisaki, K. Shimizu, J. Shimoyama, K. Kishio, N. Kaneko, M. Greven, G. D. Gu, X. J. Zhou, C. Kim, F. Ronning, N. P. Armitage, and Z. X. Shen, Phys. Rev. Lett. 88, 107001 (2002).

    Article  ADS  Google Scholar 

  10. H. Eisaki, N. Kaneko, D. L. Feng, A. Damascelli, P. K. Mang, K. M. Shen, Z. X. Shen, and M. Greven, Phys. Rev. B 69, 064512 (2004).

    Article  ADS  Google Scholar 

  11. Y. He, Y. Yin, M. Zech, A. Soumyanarayanan, M. M. Yee, T. Williams, M. C. Boyer, K. Chatterjee, W. D. Wise, I. Zeljkovic, T. Kondo, T. Takeuchi, H. Ikuta, P. Mistark, R. S. Markiewicz, A. Bansil, S. Sachdev, E. W. Hudson, and J. E. Hoffman, Science 344, 608 (2014), arXiv: 1305.2778.

    Article  ADS  Google Scholar 

  12. G. Kinoda, T. Hasegawa, S. Nakao, T. Hanaguri, K. Kitazawa, K. Shimizu, J. Shimoyama, and K. Kishio, Phys. Rev. B 67, 224509 (2003).

    Article  ADS  Google Scholar 

  13. K. Fujita, C. K. Kim, I. Lee, J. Lee, M. H. Hamidian, I. A. Firmo, S. Mukhopadhyay, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, and J. C. Davis, Science 344, 612 (2014), arXiv: 1403.7788.

    Article  ADS  Google Scholar 

  14. Z. Q. Mao, C. G. Fan, L. Shi, Z. Yao. Zhen, L. Yang, Y. Wang, and Y. H. Zhang, Phys. Rev. B 47, 14467 (1993).

    Article  Google Scholar 

  15. K. Fujita, T. Noda, K. M. Kojima, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 95, 097006 (2005).

    Article  ADS  Google Scholar 

  16. J. Meng, G. Liu, W. Zhang, L. Zhao, H. Liu, W. Lu, X. Dong, and X. J. Zhou, Supercond. Sci. Technol. 22, 045010 (2009), arXiv: 0903.1421.

    Article  ADS  Google Scholar 

  17. L. Zhao, W. T. Zhang, H. Y. Liu, J. Q. Meng, G. D. Liu, W. Lu, X. L. Dong, and X. J. Zhou, Chin. Phys. Lett. 27, 087401 (2010).

    Article  ADS  Google Scholar 

  18. Y. Zheng, Y. Fei, K. Bu, W. Zhang, Y. Ding, X. Zhou, J. E. Hoffman, and Y. Yin, Sci. Rep. 7, 8059 (2017).

    Article  ADS  Google Scholar 

  19. J. A. Slezak, J. Lee, M. Wang, K. McElroy, K. Fujita, B. M. Andersen, P. J. Hirschfeld, H. Eisaki, S. Uchida, and J. C. Davis, Proc. Natl. Acad. Sci. USA 105, 3203 (2008), arXiv: 0809.0583.

    Article  ADS  Google Scholar 

  20. Z. Q. Mao, G. J. Xu, S. Y. Zhang, S. Tan, B. Lu, M. L. Tian, C. G. Fan, C. Y. Xu, and Y. H. Zhang, Phys. Rev. B 55, 9130 (1997).

    Article  Google Scholar 

  21. G. Kinoda, H. Mashima, K. Shimizu, J. Shimoyama, K. Kishio, and T. Hasegawa, Phys. Rev. B 71, 020502(R) (2005).

    Article  ADS  Google Scholar 

  22. M. R. Presland, J. L. Tallon, R. G. Buckley, R. S. Liu, and N. E. Flower, Physica C-Superconductivity 176, 95 (1991).

    Article  ADS  Google Scholar 

  23. Y. Ando, Y. Hanaki, S. Ono, T. Murayama, K. Segawa, N. Miyamoto, and S. Komiya, Phys. Rev. B 61, R14956 (2000).

    Article  ADS  Google Scholar 

  24. J. M. Luttinger, Phys. Rev. 119, 1153 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  25. Y. Kohsaka, C. Taylor, P. Wahl, A. Schmidt, J. Lee, K. Fujita, J. W. Alldredge, K. McElroy, J. Lee, H. Eisaki, S. Uchida, D. H. Lee, and J. C. Davis, Nature 454, 1072 (2008).

    Article  ADS  Google Scholar 

  26. K. McElroy, R. W. Simmonds, J. E. Hoffman, D. H. Lee, J. Orenstein, H. Eisaki, S. Uchida, and J. C. Davis, Nature 422, 592 (2003).

    Article  ADS  Google Scholar 

  27. T. Hanaguri, Y. Kohsaka, J. C. Davis, C. Lupien, I. Yamada, M. Azuma, M. Takano, K. Ohishi, M. Ono, and H. Takagi, Nat. Phys. 3, 865 (2007), arXiv: 0708.3728.

    Article  Google Scholar 

  28. R. H. He, M. Hashimoto, H. Karapetyan, J. D. Koralek, J. P. Hinton, J. P. Testaud, V. Nathan, Y. Yoshida, H. Yao, K. Tanaka, W. Meevasana, R. G. Moore, D. H. Lu, S. K. Mo, M. Ishikado, H. Eisaki, Z. Hussain, T. P. Devereaux, S. A. Kivelson, J. Orenstein, A. Kapitulnik, and Z. X. Shen, Science 331, 1579 (2011), arXiv: 1103.2329.

    Article  ADS  Google Scholar 

  29. T. Berlijn, C. H. Lin, W. Garber, and W. Ku, Phys. Rev. Lett. 108, 207003 (2012).

    Article  ADS  Google Scholar 

  30. S. H. Pan, J. P. O’Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K. W. Ng, E. W. Hudson, K. M. Lang, and J. C. Davis, Nature 413, 282 (2001).

    Article  ADS  Google Scholar 

  31. K. M. Lang, V. Madhavan, J. E. Hoffman, E. W. Hudson, H. Eisaki, S. Uchida, and J. C. Davis, Nature 415, 412 (2002).

    Article  ADS  Google Scholar 

  32. M. C. Boyer, W. D. Wise, K. Chatterjee, M. Yi, T. Kondo, T. Takeuchi, H. Ikuta, and E. W. Hudson, Nat. Phys. 3, 802 (2007), arXiv: 0705.1731.

    Article  Google Scholar 

  33. S. Zhou, H. Ding, and Z. Wang, Phys. Rev. Lett. 98, 076401 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, Y., Bu, K., Zhang, W. et al. Electronic effect of doped oxygen atoms in Bi2201 superconductors determined by scanning tunneling microscopy. Sci. China Phys. Mech. Astron. 61, 127404 (2018). https://doi.org/10.1007/s11433-018-9276-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9276-5

Keywords

Navigation