Skip to main content
Log in

Redshift drift constraints on holographic dark energy

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The Sandage-Loeb (SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman-α forest of distant quasars, covering the “redshift desert” of 2 ≲ z ≲ 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy (HDE) model and the Ricci holographic dark energy (RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm0 and the Hubble constant H 0 in other cosmological observations. For the considered two typical dark energy models, not only can a 30-year observation of SL test improve the constraint precision of Ωm0 and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and T. S. C. Project, Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  3. A. Sandage, Astrophys. J. 136, 319 (1962).

    Article  ADS  Google Scholar 

  4. A. Loeb, Astrophys. J. 499, L111 (1998).

    Article  ADS  Google Scholar 

  5. P. S. Corasaniti, D. Huterer, and A. Melchiorri, Phys. Rev. D 75, 062001 (2007).

    Article  ADS  Google Scholar 

  6. A. Balbi, and C. Quercellini, Mon. Not. R. Astron. Soc. 382, 1623 (2007).

    Article  ADS  Google Scholar 

  7. H. Zhang, W. Zhong, Z. H. Zhu, and S. He, Phys. Rev. D 76, 123508 (2007).

    Article  ADS  Google Scholar 

  8. J. Zhang, L. Zhang, and X. Zhang, Phys. Lett. B 691, 11 (2010).

    Article  ADS  Google Scholar 

  9. Z. Li, K. Liao, P. Wu, H. Yu, and Z. H. Zhu, Phys. Rev. D 88, 023003 (2013).

    Article  ADS  Google Scholar 

  10. S. Yuan, and T. J. Zhang, J. Cosmol. Astropart. Phys. 02, 025 (2015).

    Article  ADS  Google Scholar 

  11. M. Martinelli, S. Pandolfi, C. J. A. P. Martins, and P. E. Vielzeuf, Phys. Rev. D 86, 123001 (2012).

    Article  ADS  Google Scholar 

  12. J. J. Geng, J. F. Zhang, and X. Zhang, J. Cosmol. Astropart. Phys. 07, 006 (2014).

    Article  ADS  Google Scholar 

  13. J. J. Geng, J. F. Zhang, and X. Zhang, J. Cosmol. Astropart. Phys. 12, 018 (2014).

    Article  ADS  Google Scholar 

  14. J. J. Geng, Y. H. Li, J. F. Zhang, and X. Zhang, Eur. Phys. J. C 75, 356 (2015).

    Article  ADS  Google Scholar 

  15. J. J. Geng, R. Y. Guo, D. Z. He, J. F. Zhang, and X. Zhang, Front. Phys. 10, 109501 (2015).

    Article  Google Scholar 

  16. A. G. Cohen, D. B. Kaplan, and A. E. Nelson, Phys. Rev. Lett. 82, 4971 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Li, Phys. Lett. B 603, 1 (2004).

    Article  ADS  Google Scholar 

  18. S. Wang, J. J. Geng, Y. L. Hu, and X. Zhang, Sci. China-Phys. Mech. Astron. 58, 019801 (2015).

    Google Scholar 

  19. J. L. Cui, Y. Y. Xu, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 58, 110402 (2015).

    Article  Google Scholar 

  20. R. Y. Guo, and X. Zhang, Eur. Phys. J. C 76, 163 (2016).

    Article  ADS  Google Scholar 

  21. Y. Y. Xu, and X. Zhang, Eur. Phys. J. C 76, 588 (2016).

    Article  ADS  Google Scholar 

  22. L. Feng, and X. Zhang, J. Cosmol. Astropart. Phys. 08, 072 (2016).

    Article  ADS  Google Scholar 

  23. X. Zhang, Phys. Rev. D 93, 083011 (2016).

    Article  ADS  Google Scholar 

  24. S. Wang, Y. F. Wang, D. M. Xia, and X. Zhang, Phys. Rev. D 94, 083519 (2016).

    Article  ADS  Google Scholar 

  25. C. Gao, F. Wu, X. Chen, and Y. G. Shen, Phys. Rev. D 79, 043511 (2009).

    Article  ADS  Google Scholar 

  26. X. Zhang, Phys. Rev. D 79, 103509 (2009).

    Article  ADS  Google Scholar 

  27. R. G. Cai, B. Hu, and Y. Zhang, Commun. Theor. Phys. 51, 954 (2009).

    Article  ADS  Google Scholar 

  28. A. Conley, J. Guy, M. Sullivan, N. Regnault, P. Astier, C. Balland, S. Basa, R. G. Carlberg, D. Fouchez, D. Hardin, I. M. Hook, D. A. Howell, R. Pain, N. Palanque-Delabrouille, K. M. Perrett, C. J. Pritchet, J. Rich, V. Ruhlmann-Kleider, D. Balam, S. Baumont, R. S. Ellis, S. Fabbro, H. K. Fakhouri, N. Fourmanoit, S. Gonzalez-Gaitan, M. L. Graham, M. J. Hudson, E. Hsiao, T. Kronborg, C. Lidman, A. M. Mourao, J. D. Neill, S. Perlmutter, P. Ripoche, N. Suzuki, and E. S. Walker, Astrophys. J. Suppl. 192, 1 (2011).

    Article  ADS  Google Scholar 

  29. F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, Mon. Not. R. Astron. Soc. 416, 3017 (2011).

    Article  ADS  Google Scholar 

  30. N. Padmanabhan, X. Xu, D. J. Eisenstein, R. Scalzo, A. J. Cuesta, K. T. Mehta, and E. Kazin, Mon. Not. R. Astron. Soc. 427, 2132 (2012).

    Article  ADS  Google Scholar 

  31. L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton, A. S. Bolton, J. Brinkmann, J. R. Brownstein, A. Burden, A. J. Cuesta, L. A. N. da Costa, K. S. Dawson, R. de Putter, D. J. Eisenstein, J. E. Gunn, H. Guo, J. C. Hamilton, P. Harding, S. Ho, K. Honscheid, E. Kazin, D. Kirkby, J. P. Kneib, A. Labatie, C. Loomis, R. H. Lupton, E. Malanushenko, V. Malanushenko, R. Mandelbaum, M. Manera, C. Maraston, C. K. McBride, K. T. Mehta, O. Mena, F. Montesano, D. Muna, R. C. Nichol, S. E. Nuza, M. D. Olmstead, D. Oravetz, N. Padmanabhan, N. Palanque-Delabrouille, K. Pan, J. Parejko, I. Paris, W. J. Percival, P. Petitjean, F. Prada, B. Reid, N. A. Roe, A. J. Ross, N. P. Ross, L. Samushia, A. G. Sanchez, D. J. Schlegel, D. P. Schneider, C. G. Scoccola, H. J. Seo, E. S. Sheldon, A. Simmons, R. A. Skibba, M. A. Strauss, M. E. C. Swanson, D. Thomas, J. L. Tinker, R. Tojeiro, M. V. Magana, L. Verde, C. Wagner, D. A. Wake, B. A. Weaver, D. H. Weinberg, M. White, X. Xu, C. Yeche, I. Zehavi, and G. B. Zhao, Mon. Not. R. Astron. Soc. 427, 3435 (2012).

    Article  ADS  Google Scholar 

  32. C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, D. Croton, T. M. Davis, M. J. Drinkwater, K. Forster, D. Gilbank, M. Gladders, K. Glazebrook, B. Jelliffe, R. J. Jurek, I. Li, B. Madore, D. C. Martin, K. Pimbblet, G. B. Poole, M. Pracy, R. Sharp, E. Wisnioski, D. Woods, T. K. Wyder, and H. K. C. Yee, Mon. Not. R. Astron. Soc. 425, 405 (2012).

    Article  ADS  Google Scholar 

  33. Y. Wang, and S. Wang, Phys. Rev. D 88, 043522 (2013).

    Article  ADS  Google Scholar 

  34. A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, and R. Chornock, Astrophys. J. 730, 119 (2011).

    Article  ADS  Google Scholar 

  35. J. Liske, A. Grazian, E. Vanzella, M. Dessauges, M. Viel, L. Pasquini, M. Haehnelt, S. Cristiani, F. Pepe, G. Avila, P. Bonifacio, F. Bouchy, H. Dekker, B. Delabre, S. D’Odorico, V. D’Odorico, S. Levshakov, C. Lovis, M. Mayor, P. Molaro, L. Moscardini, M. T. Murphy, D. Queloz, P. Shaver, S. Udry, T. Wiklind, and S. Zucker, Mon. Not. R. Astron. Soc. 386, 1192 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Fei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, DZ., Zhang, JF. & Zhang, X. Redshift drift constraints on holographic dark energy. Sci. China Phys. Mech. Astron. 60, 039511 (2017). https://doi.org/10.1007/s11433-016-0472-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0472-1

Keywords

PACS number(s)

Navigation